

🕴 P O W E R G E N 1 8 🛛 🗗 😏 🏡 🮯

Using Data Analytics for Gas Turbines: Basics, Potential Pitfalls, and Best Practices

PGU 306 – Christopher Perullo

Senior Research Engineer Aerospace Engineering Georgia Institute of Technology

December 3, 2018

Outline

- Some Basic Definitions
- Types of Data Analytic / AI / Machine Learning Models
 - Artificial Neural Networks
 - Clustering Algorithms (Many APR packages)
 - Classification Algorithms
 - Bayesian Learning
- Model Selection What's appropriate for my problem?
- General Model Creation Process (With Examples)
 - Real or Simulated Data?
 - Identifying a good training data set
 - Evaluating model quality & model validation
- Case Studies
 - Gas turbine performance data Neural Networks
 - Gas turbine performance data Clustering
 - Identifying discrete operating modes Neural Networks

Goals of Course

- You should get two things from this course:
- When to use the right tool (model)...

 Basic tools and techniques to evaluate if your results are any good...

What Will Be Avoided Today

- Lots of math or derivations
- Extensive deep-dive into every variant of machine learning
- We will discuss
 - High level categories of models
 - Techniques appropriate to all classes of modeling
- Still important to understand nuances of chosen method
- Unnecessary jargon

A Brief Survey

- 1. Who here has used PRiSM / Smart Signal / PredictIt! Etc.?
- 2. Does your company have a structured process in place for model building and validation?
- 3. How good are your models?
- 4. Why did you pick the modeling approach you chose?
- 5. Bonus: What is the modeling approach you chose?

Course Outline

Basic Definitions

Basic Definitions <u>Datasets</u>

• Training Data:

- Data used to train the model
- Should be free of errors
- Should be differentiated into discrete operating modes
- Should cover entire operational space (i.e., ambient temperature)

Verification Data:

- Data used to validate model's goodness of fit
- Should be selected from same data set as training data
- Used to identify if model is over-fit

Validation Data:

- Data used to validate model's predictive capability
- Should be selected from a data set outside of the training region
- Validates whether important factors are missing or if training set was not extensive enough

Basic Definitions Learning

- Supervised Learning
 - Dataset has known inputs and outputs
 - Dataset can be categorized a priori
 - Most engineering problems fall into this category

Unsupervised Learning

- Inputs and outputs are abstract or cannot be defined
- Appropriate when relationship between variables is unknown (i.e., social behavior)

Basic Definitions <u>Randomness</u>

Deterministic Model

- Unique inputs provide unique output
- Most common type of model
- More sensitive to data quality

Stochastic or Probabilistic Model

- Inputs and/or outputs represented by probability distribution
- More common in lifing problems

Overview of Common Types of Analytics and Machine Learning

A Note on AI / Machine Learning

- The topics we will be discussing today apply to any type of model regression
- You want to create a 'black box' between inputs and outputs
- Can be based on:
 - Measurement data (plant data)
 - Computer generated data (FEM model)
 - Combination
- Conceptually useful to think of machine learning as high fidelity curve fit
- TRUE INTELLIGENCE REQUIRES
 INSIGHT

Artificial Neural Networks

Clustering Algorithms (APR often falls into this category)

Advanced Pattern Recognition

Bayesian Learning

Common Types of Machine Learning

Artificial Neural Networks

Clustering Algorithms (APR often falls into this category)

Advanced Pattern Recognition

Bayesian Learning

Common Types of Machine Learning

Artificial Neural Networks – What are they?

- Designed to mimic the connection of neurons in the human brain
- Nominally consists of 3-4 layers (multi layer perceptron)
 - Input layer
 - One to two neuron layers (hidden nodes)
 - Output layer
- Both deterministic and probabilistic types exist
- Static and 'learning' or updating models exist
- Today we will be discussing deterministic / static models

Inputs	Hidden Layer 1	Hidden Layer 2	Outputs

Artificial Neural Network - Uses

- Uses
 - Fitting models to observed data
 - Fitting models to computer generated data
 - Classification
- Types
 - Shown below
 - For your typical applications will deal with Multi Layer Perceptron (see next slide)
 - Radial Basis Single Layer Perceptron Network (RBN) Recurrent Neural Network Multi Layer Perceptron LSTM Recurrent Neural Network Hopfield Network Boltzmann Machine Hidden Unit Input Unit **Backfed Input Unit** Feedback with Memory Unit Output Unit Probabilistic Hidden Unit

- Pros
 - Can adapt to discrete and non-linear responses
 - Computationally efficient and portable once trained
 - Can handle both discrete and continuous inputs simultaneously
- Cons
 - Easy to over-fit (more on this later)
 - Can require more extensive data set for training
 - Can be guess and check on network structure (number of nodes)

Artificial Neural Networks – Common Functional Forms

- Input layer: Regression variables
- Hidden Layers contain activation functions
- Hidden Layers (commonly one or two)
 - Sigmoid $f(x) = \frac{1}{1+e^{-x}}$
 - Gaussian $f(x) = e^{-x^2}$
 - Linear f(x) = x
 - ArcTan $f(x) = \operatorname{atan}(x)$
 - Other variations, but all have similar characteristics shapes
- Output Layer
 - Linear combination of last hidden layer
 - $Y = aH1(bx + c) + eH2(fx + g) + \cdots$
- Backpropagation algorithm solves for coefficients

Typical Activation Functions

ANN Major Considerations - Overfitting

- Neural networks are more complex
- Overfitting can lead to erratic behavior
- Provides inconsistent predictions away from training points
- Can cause issues if used in numerical simulation (including APR)
 - Most models work better if underlying functions are smooth with slowly changing gradient
 - Fortunately most engineering problems are also 1st or 2nd order
- Another reason training data quality is critical
 - A neural network can fit the data if given enough degrees of freedom

ANN Major Considerations - Overfitting

- Extremely easy to overfit the model
- Take the example of y=x^2 with noise of +/- 0.5
- Plots show second and 5th order fits
- Which one is better?

Copyright 2018 by Christopher Perullo

ANN Major Considerations – Overfitting and Extrapolation

What about Extrapolation?

Second Order Fit y = ax² + bx + c

Fifth Order Fit $y = ax^5 + bx^4 + cx^3 + dx^2 + ex + f$

Copyright 2018 by Christopher Perullo

Choosing the Network Structure

- Structure Consists of:
 - Number of nodes
 - Type of activation function in each layer
- Is an iterative process use below as starting point
- Use error diagnostics (later on) to evaluate and compare multiple regressions

Node Types				
Node Type	# of nodes			
Input	Defined by problem (X's)			
Hidden 1 (closer to inputs)	~ number of outputs * (number of inputs)			
Hidden 2 (closer to outputs)	0 < Number of outputs < number of inputs			
Output	 Two options: 1. Fit one neural network per output (Y) a) Easier to fit b) Simplifies network structure 2. Fit multiple outputs a) Enables coupling to be observed between Y1 and Y2 b) Often requires additional hidden nodes 			

Choosing the Network Structure

- Structure Consists of:
 - Number of nodes
 - Type of activation function in each layer
- Is an iterative process use below as starting point
- Use error diagnostics (later on) to evaluate and compare multiple regressions

Types of Nodes				
Type of Activation Function	Considerations	1 0.8 0.6		
Linear	Linear + Linear = LinearCannot capture curvature			
Gaussian	 Threshold function Useful for classification problems in input layer 	-0.2 -0.4		
Sigmoid Shape	 Most generic (and useful) Should be second layer on classification problems – can represent probability 	-0.6 -0.8 -1 -5 -3 -1		

Typical Activation Functions

Input

–Sigmoid −Gaussian −Linear

1

3

5

Artificial Neural Networks

Clustering Algorithms (APR often falls into this category)

Advanced Pattern Recognition

Bayesian Learning

Common Types of Machine Learning

Clustering Algorithms – What Are They?

- Identify clusters of common data points in multidimensional space
- Good for unsupervised learning
- Most are geometrically based
 - Define centroids of commonality
- Balance specificity against generality
 - Could have one cluster point for every point in data set
 - Could have one or two clusters for large number of points

Clustering Algorithms - Uses

Clustering Types: K- means

- One of the more common types is called k-means clustering
- Forms clusters on k (user selected) means in the dataset
- As an example define boundaries for peaking, cycling, and baseload operation based solely on data

K-Means Clustering Process (3 clusters)

Clustering Types: K- means

- Example use "actual" data to cluster operational profiles (hours and starts per year)
- Do we get results that match expectations?

Which One is Best?

Clustering Types: K- means

- Example use *"actual"* data to cluster operational profiles (hours and starts per year)
- Do we get results that match expectations?

Which One is Best? Statistically - #4

Clustering Types: Hierarchical

- Builds a hierarchy of clusters
- Hierarchy usually basis splits on some form of geometrically based distance
- Can be computationally more efficient
 - Calculate distances to cluster based on tree
 - Do not have to calculate distance to every cluster

Clustering Types: Hierarchical

 Builds upon flat, k-means with hierarchy of clusters

Clustering Types: Hierarchical

TOP – K-Means BOTTOM - Hierarchical

Clustering Major Considerations

- Remember that clusters are based on available data!
- No physics behind the clustering!
- Easy to over or underfit data
- Useful to identifying group membership
- Not as useful as a predictive model

Artificial Neural Networks

Clustering Algorithms (APR often falls into this category)

Advanced Pattern Recognition - Classification

Bayesian Learning

Common Types of Machine Learning

Classification Algorithms – What Are They?

- Predict class membership based on input data
- Conceptually similar to clustering, except groups are tagged in advance
- Several common types
 - Logistic Regression
 - Naïve Bayes Classifier
 - K-Nearest Neighbors
 - Decision Trees
 - Neural Networks
- All basically predict probability that certain set of inputs belongs to specific class
- Will hit highlights of each method
 - Carry operating profile as example
 - This time assume you received list of hours and starts per year with base / peak / cyclic tagged
 - You want to figure out general formula to classify additional units

Classification Algorithms – Uses

- Uses
 - Appropriate when training dataset already 'tagged'
- Types
 - Logistic Regression
 - Naïve Bayes Classifier
 - K-Nearest Neighbors
 - Decision Trees
 - Neural Networks
- Pros
 - Several options available
 - Conceptually easy to understand
 - More complex functional forms available
- Cons
 - Relies upon prior knowledge of group membership
 - Some are geometrically based

Classification Example Applications – Logistic Regression

- Predicts probability of something being true based on one or more correlating parameters
- $p(x) = \frac{1}{1 + \exp(f(z))}$
- Z is linear transformation of inputs
- For multiple possibilities create multiple classifiers and choose one with largest probability
 - As shown below regressions are mutually exclusive
 - In this example transition boundaries relatively tight do not have to be depending on scatter in data

Classification Example Applications – Naïve Bayes

- Bayes Theorem:
 - $P(Y|F) = \frac{P(F|Y)P(Y)}{P(F)}$
- · Bayes Classifier assumes features are conditionally independent
 - P(needcoffee|Monday, InClass) = P(needcoffee|Monday) * P(needcoffee|InClass)

Classification Example Applications – K Nearest Neighbors

- Similar to clustering approach, except response is the average of the k-nearest neighbors
- For a new point finds *k* nearest neighbors
- Largest number of matches yields class association
- Choosing the right k is trial and error

- Assume k set to three
- New point at X
- 3 nearest neighbors are two blue and one green
- Membership is blue

Classification Example Applications – Decision Trees

- Recursively subdivide the dataset into a decision tree
- Results in square spaces
- May not be useful if boundaries are correlated or non-linear

Classification Major Considerations

- Need to consider the shape of the space and what defines membership
 - Either / or relationship? Decision tree
 - Closeness to existing metrics which are independent of each other – Bayes
 - Non-linear or correlated boundaries Logistic Regression
 - Geometric similarity to existing parameters K-Nearest Neighbors
- More advanced techniques exist, these are some of the more common ones you'll come across
- The software you use may not describe method why it's critical to plot the results!

Artificial Neural Networks

Clustering Algorithms (APR often falls into this category)

Advanced Pattern Recognition

Bayesian Learning

Common Types of Machine Learning

Copyright 2018 by Christopher Perullo

Bayesian Networks – What Are They?

• Follows Bayes Theorem:

•
$$P(Y|F) = \frac{P(F|Y)P(Y)}{P(F)}$$

- The power behind Bayesian Networks lie in the fact that:
 - Prior beliefs can influence posterior (future) thinking based on new observations
 - Allow for model to learn over time as new data becomes available
 - Probabilistic

Bayesian Networks – A Simple Example

Will do exercise in class

Copyright 2018 by Christopher Perullo This Photo by Unknown Author is licensed under CC BY-NC-ND

Bayesian Networks – A More "Real World" Example

CopyrighWiegerinisk, WmBurgers, W.P.Kappen, B., "Bayesian Networks, Introduction and Practical Applications"

bronchitis

dyspnoea

Bayesian Learning – Uses

Uses

- Model calibration
- Diagnostics
- Model Updating

• Pros

- Flexible
- Can learn over time
- Suitable for discrete and continuous data
- Good for mixed data sets

Cons

- Often difficult to setup
- Validation tricky
- Often requires coupling with additional modeling (i.e., neural networks)

Idea Behind Bayesian Calibration

- Use assumed prior belief coupled with observations to update your prior belief
- Also takes into account measurement and model representation error
 - Model representation error known from regression (prior slide)
 - Measurement error can be assumed based on sensor types
- All values are really distributions
 - Conceptually think of every measurement & prediction as having a +/intrinsically associated with it

A Simple Example – Winning Percentage

- A binomial distribution shows expected win • rate
 - Useful for example since it is a 'closed form' • update
- Example 1: Little prior knowledge
 - Let's assume I know my favorite team has 2 wins and 2 losses
 - The winning percentage is 50%, but how sure am I that is the true value?
 - This curve represents my prior belief ٠
 - · Looking at the spread it says I'm open to changing my opinion
- Let's say my team goes on to win 5 in a row (so they are now 7 and 2)
 Now I'm fairly convinced they are an above 50%
 - team
 - Still some uncertainty as to how much better •

A Simple Example – Winning Percentage - Continued

- Now let's assume my prior knowledge is that the team has 50 wins and 50 losses
 - Same winning percentage (50%) as prior example
 - More evidence, so I'm more certain
- Assume the team wins the next 5 games, same as before
 - Now 55 wins and 50 losses
 - Still shits my opinion, but the meat of my opinion is that they're still close to a .500 team

Winning Percentage – Putting into Bayesian Speak

Gas turbine model more complex, but same basic idea:

There are health and performance parameters which influence the performance of the machine – we want to estimate them based on our working knowledge of the hardware

Selecting the Right Modeling Approach

Characteristics to Consider

- Do I have specific responses (outputs)?
- Are my responses:
 - Continuous?
 - Discrete Numerical?
 - Categorical?
 - Mixed?
- Is the training data synthetic or measured?
 - How much noise in your dataset?
 - Can you denoise the data through signal analysis?
 - Reconcile with a model?
- How noisy is your dataset?

Model Type Selection Cheat Sheet

Copyright 2018 by Christopher Perullo

Model Creation Process

General Model Creation Process

Constructing a training set

- Identifying a good training data set
- Real or Simulated Data?
- Identifying good training regions
- Outliers vs. 'bad' data

Identifying Responses

- Continuous
- Discrete (classification)
- *Probabilistic
- Train the Model
- Evaluating Model Accuracy
 - Actual vs. Predicted
 - Residual vs. Predicted
 - Model Fit and Representation Error
 - Diagnosing bad model fits

Identifying Training Set

- Need to consider applicability of model
 - Do you have a good coverage of operating conditions?
 - Will the resulting model need to extrapolate?
- Critical continuous measurements to consider:
 - Compressor inlet temperature
 - Inlet pressure drop
 - Exhaust pressure drop
 - Inlet guide vane angle
 - RPM
 - Fuel heating value
 - Ambient Pressure
- Less critical, still important:
 - Fuel temperature
- Consider if you want to track only base load conditions

Cleaning GT Data - Transients

- Want to remove load swings from data set
- Thermal heat soak takes time
- Recommend removing data ~15 minutes before and after load change
- Cannot use MW to determine this as it changes with operating conditions
- In combined cycle operations
 - Use inlet guide vane angle to determine load changes
- In simple cycle operations
 - Depends on control curve if combined cycle control curve use inlet guide vane angle
 - If simple cycle control curve use estimated firing temperature if not available could use exhaust gas temperature
- AGP / Model Based control can make this more difficult
 - Control curve could be dynamic more on this in a minute

How do you identify baseload conditions?

- 1. Constrain RPM >= 3,600 (or 3,000)
- 2. Constrain IGV to full open

Copyright 2018 by Christopher Perullo

- 1. Constrain RPM >= 3,600 (or 3,000)
- 2. Constrain IGV to full open
- Visually remove remaining outliers (or pre-process to remove those without tags)

Date

- 1. Constrain RPM >= 3,600 (or 3,000)
- 2. Constrain IGV to full open
- 3. Visually remove remaining outliers (or pre-process to remove those without tags)
- 4. NOW WHAT?

- Plot Exhaust gas temperature vs. CDT or CPR (for DLN)
- 2. Should be a single line
- 3. Multiple lines indicate hardware or control changes
- 4. If control changes, must have control curve represented in model

Compressor Pressure Ratio

For this example, assume single control curve

- 1. Fit line to data
- 2. Remove points outside of +/- 10 degrees
- 3. WHAT IF YOU HAVE AGP / MODEL BASED CONTROL?

Compressor Pressure Ratio

Control curve not static if MBC present

- 1. Fit line to data
- 2. Remove points outside of +/- 10 degrees
- 3. WHAT IF YOU HAVE AGP / MODEL BASED CONTROL?
- 4. Can use Tfire calculation as well if trusted

Compressor Pressure Ratio

Control curve not static if MBC present

Cleaning GT Data Discrete Operating Modes

Copyright 2010 by Christopher Perulio

Cleaning GT Data – Discrete Operating Modes

They are not statistical outliers – shown highlighted

Copyright 2016 by Christopher Peruno

Cleaning GT Data Discrete Operating Modes

- Red points on prior slide are steam injection
- Other discrete modes to screen for:
 - Inlet bleed heat
 - Steam / Water injection
 - Peak firing
 - Fuel type (liquid / gas)
 - Evaporative cooling / inlet chilling
 - Usually can be lumped as continuous parameters if compressor inlet temperature is tracked
 - Sometimes cause non-uniform flow which leads to erroneous sensor measurements
 - Suggest using if large scatter in measurements correlates with inlet cooling use

Training the Model

- Specifics depend on the software you are using
- Before clicking the 'go' button
 - Make sure data is properly segmented into
 - Training
 - Verification
 - Validation
 - Some software does this automatically (most don't)
 - Understand modeling options
- It's ok if you don't understand math behind every option – try them all!
- Process on next few slides will allow you to objectively compare the options

Training vs. Validation Data

- Recommend splitting cleaned training data into two regions
 - Base training and verification set:
 - Training data: 75%
 - Verification data: 25%
 - Validation set:
 - Should contain full coverage over training region and small scale extrapolation if available

Training vs. Validation Data

- Recommend splitting cleaned training data into two regions
 - Base training and verification set:
 - Training data: 75%
 - Verification data: 25%
 - Validation set:
 - Should contain full coverage over training region and small scale extrapolation if available

Training and verification data should be randomly chosen from region with full coverage – Ensures you do not bias model on any inputs or unmeasured parameters

Copyright 2018 by Christopher Perullo

Copyright 2018 by Christopher Perullo

Model Fitting – Evaluating Quality

- R²: Proportion of the variance in the dependent variable that is predictable from the independent variables
 - $R^2 = 1 \frac{SS_{residuals}}{SS_{total}}$
 - $SS_{total} = \sum_i (x_i \bar{x})^2$
 - $SS_{residuals} = \sum_{i} (x_i y_i)^2$
- - A good initial screening tool
 Low values (<0.8 to 0.9) indicate poor accuracy
 - High values do not indicate a good model
- Acceptable values tell you that functional form of the model you have chosen is acceptable
 - Type of model (neural, clustering)
 - Model parameters (degrees of freedom, number of nodes)
- Does not evaluate predictive capability of model!

Model Fitting – Actual vs. Predicted

 Cross plot of training data vs. model prediction for same inputs

Model Fitting – Actual vs. Predicted Diagnostic Plots

Curvature could indicate higher order model needed

Increase degree, # of nodes or clusters

Banding or multiple series could indicate important input was neglected

Check for missing correlating parameter or 'clumped' input data

Model Fitting – Residuals vs. Predicted

Model Fitting – Error Distributions

- Can calculate as percent error or residual
- Useful for two diagnostics
 - Error is normally distributed
 - Model is not over-fit
- Should be centered around zero and normally distributed

Percent Error or Absolute Residual

BREAK TIME!

Additional Statistics for Categorical Models

Confusion Matrix

- Provides quick scan of accuracy of discrete predictions
- Essentially a discrete version of the actual vs. predicted plot
- Suitable for categorical or ordinal data
 - Categorical = red, green, blue
 - Ordinal = 1, 2, 3, 4 or first, second, third

This form provides good quick visual – is there a better way to examine?

- Constructs a table of confusion for each category
- Is basis for constructing graphical diagnostic (next slide)

- Constructs a table of confusion for each category
- Is basis for constructing graphical diagnostic (next slide)

- Constructs a table of confusion for each category
- Is basis for constructing graphical diagnostic (next slide)

- Constructs a table of confusion for each category
- Is basis for constructing graphical diagnostic (next slide)

Receiver Operating Characteristic (ROC) Curve

- Plots true positive rate against false positive rate
- Neural networks actually predict probability of classification – lead to multiple tables – can be used to generate curve

Receiver Operating Characteristic (ROC) Curve

Receiver Operating Characteristic – Decision Tree

Receiver Operating Characteristic – Logistic Regression

Use Cases

Example use Cases

- Performance Examples Which model is better at predicting expected power?
 - Neural Network of Performance
 - Clustering (k-means) model of performance
- Neural Network Classifier
 - Can we predict when steam injection is running ? (using prior example)

Fitting Neural Network to Performance Data – Use Case

- Attempt to use one year of data to predict the next year's power output?
- Let' use a neural network

Neural Network – Step 1 – Select Input List

- For gas turbine, typical inputs list
 - In order of importance for power
 - List or ordering may change for different metrics
- Input list for this use case
 - Compressor Inlet Temperature
 - Compressor Inlet Pressure Drop
 - Exhaust Pressure Drop
 - Barometric Pressure
 - Natural Gas (or fuel) Temperature
 - Relative Humidity
- Six inputs one output let's try it!

Neural Network Use Case – Selecting the Structure

- 6 inputs, 1 output
- Try one hidden layer with 6 nodes first
- Use TanH activation function

Node Type	# of nodes
Input	Defined by problem (X's)
Hidden 1 (closer to inputs)	~ number of outputs * (number of inputs)
Hidden 2 (closer to outputs)	0 < Number of outputs < number of inputs
Output	 Two options: 1. Fit one neural network per output (Y) a) Easier to fit b) Simplifies network structure 2. Fit multiple outputs a) Enables coupling to be observed between Y1 and Y2 b) Often requires additional hidden nodes

- Check Diagnostics
 - R^2 Training = 0.987
 - R² Verification = 0.988
- Actual by predicted plots: Training

Residual by predicted plots:
 Training

Verification

Model error distributions (% error)

mean = -0.25%, std. dev = 0.47% mean = -0.59%, std. dev = 0.67%

• Residual by predicted plots: Training

Non centered mean with increase in error for verification could indicate sub-par fit

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

mean = -0.25%, std. dev = 0.47% mean = -0.59%, std. dev = 0.67%

- In addition to standard diagnostic set should check shape of regression
- Plot partial derivatives of each input against each output
- Generate by holding other parameters constant

Neural Network – 6 nodes – generating partials

Neural Network – 6 nodes – generating partials

Try Additional Nodes

- Try two layer network with 6 inputs and 6 outputs
- Regular statistics show good results
- What about partial derivatives?

Power (MW)

Trying Additional Nodes

- Try two layer network with 6 inputs and 6 outputs
- Regular statistics show good results
- What about partial derivatives?

Need to examine data to understand what causes switching behavior

Diagnosing Strange Behavior

- Cross plot inputs to look for trends
- Clearly two discrete power vs. exhaust pressure drop curves
- Could it be discrete event?
 - Cross plot gas turbine parameters vs. time
 - Color the two regions to quickly identify separation

Diagnosing Strange Behavior

No obvious correlation with time or any gas turbine parameters

Bellmouth dP (Gas Turbine Flow)

Exhaust pressure drop tracks with gas turbine flow

Diagnosing Strange Behavior

- Appears to be relationship between fuel gas temperature and exhaust pressure drop
- Neural network correctly captured this behavior

Exhaust Pressure Drop Copyright 2018 by Christopher Perullo

Next Steps

- A) Do you care about the physical reason?
 - Neural network appears to capture nonlinear variability
 - Check validation data set!
- B) Should track down physical reason and include additional inputs to model if necessary

Copyright 2018 by Christopher Perullo

Neural Network – Checking Validation Data Set

• Trend still captured – error looks good!

Attempting Clustering

- Use same data set as before
- K-Nearest Neighbors using 3 closest neighbors
- Actual by predicted shown below:

Clustering – Predicted vs. Actual

- Use same data set as before
- K-Nearest Neighbors using 3 closest neighbors
- Actual by predicted shown below:

Clustering - Residuals

Training Data

mean = -0.06, std. dev = 0.63

Verification Data mean = -0.02, std. dev = 0.79

Validation Data

mean = 0.33, std. dev = 1.92

Clustering – Percent Error

Training Data

mean = -0.04%, std. dev = 0.37%

Verification Data mean = -0.01%, std. dev = 0.45%

Validation Data

mean = 0.22%, std. dev = 1.121%

How Well Does Clustering Capture Bi-Modal Behavior?

Exhaust Pressure Drop

Neural Network Categorized Model

- Maybe we want to develop neural network to pre-screen performance data
- Can we use a neural network to identify points with steam injection? (marked in red)

Input List

• Previous example input list

- Compressor Inlet Temperature
- Compressor Inlet Pressure Drop
- Exhaust Pressure Drop
- Barometric Pressure
- Natural Gas (or fuel) Temperature
- Relative Humidity

• Add additional information about state of the unit

- Compressor discharge pressure and temperature
- Exhaust Gas Temperature
- Fuel flow
- Mass flow (bellmouth sensor)
- Power Output

What Structure?

- Already know from prior example two layer network works better
- 13 inputs & 1 output
- Let's try:
 - 2 layers
 - 13 hidden nodes in each layer
 - TanH activation function

Predicting Steam Injection

- Great Prediction!
- A word of caution
 - Models built from measured data may not be applicable to other units

	Predicted	
Actual	Count	
Injection	Off	On
Off	8983	3
On	3	1389

Advanced Tips and Tricks

Copyright 2018 by Christopher Perullo

Other Tricks

- Nesting / Layered Models
 - Create layered models where output of one becomes input to another
 - Requires model checks to work from chained error, not individual fits
- Transformed Variables
 - Apply log or exponential transformations to responses (outputs of model)
 - Make sure to un-transform for calculation of error checks
- Fit probability parameters
 - If data has random variation fit distribution and then fit distribution parameters using machine learning

#POWERGEN18 👎 😏 🚠 🮯

Questions?

Christopher Perullo

Senior Research Engineer

chris.perullo@ae.gatech.edu

