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Abstract—Maintenance at large-scale photovoltaic plants 

employs a mix of preventative and corrective maintenance 

practices. Large outages, such as an inverter tripping offline, are 

often easy to detect. More subtle sub-inverter faults and failures 

can accumulate and go unnoticed for months or years. A software-

based fault detection method has been developed to analyze 

commonly measured data from large-scale PV plants for more 

timely detection of subtle underperformance. The method has 

been demonstrated on eight datasets from large-scale plants with 

high accuracy of detection. Results are validated using aerial 

infrared scanning. String outages are detected with a true positive 

rate of 73 percent and tracker issues are detected with a true 

positive rate of 88 percent. The developed method can be 

uniformly applied to photovoltaic plants across a range of scales 

and configurations to assess performance, quickly detect 

underperformance, and determine the source and location of 

failures. The results inform and improve operations and 

maintenance at PV plants, ultimately aiding in improved 

affordability, reliability, availability, and resiliency of solar 

electricity. 
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I. INTRODUCTION 

Monitoring and Diagnostics (M&D) is of increasing 
importance for all forms of power generating assets with respect 
to improved operations, maintenance, reliability, and 
affordability. Advances in data analytics and algorithms, 
affordable data storage and computational power, ease of 
information transfer and communication, and sensor and 
instrumentation capabilities and affordability all offer new 
capabilities and insights to plant owners and operators [1], [2]. 
Utilizing and integrating each of these technological 
advancements to their fullest potential is an active research area. 

Maintenance at many photovoltaic (PV) plants utilizes a mix 
of preventative and corrective maintenance practices. Corrective 
(a.k.a., reactive, break-fix) maintenance resolves failures after 
they occur. Preventative maintenance involves performing tasks 
before equipment fails and/or becomes unsafe. When 
preventative maintenance occurs, it can be based on multiple 
factors, generally categorized as time-based (e.g., annual) or 
condition-based (e.g., predictive analytics). Developing the 
basis for condition-based maintenance often requires analyzing 
data from the plant. Detecting when major pieces of equipment 
fail, such as inverters, is straightforward based on data collected 

from existing, intrinsic sensors embedded by the equipment 
manufacturer [3]. 

Detecting more subtle failures that occur within the DC 
collector field is more difficult. Failures that impact a single 
module, or even an entire string, are often undetectable through 
monitoring production yield alone. These failures can still be 
identified through various field inspection techniques which are 
not conducive to continuous online monitoring [4]. Some 
manual electrical testing methods, such as field I-V curve 
tracing, may take days or weeks to complete. Varying 
meteorological conditions over this time period can often mask 
any issues that may be present [5]. 

Time-based aerial infrared (IR) imaging is one common 
detection method used to detect failures in the collector field. 
This is usually performed on an annual cadence. Failures 
detected include electrical and mechanical issues such as 
module underperformance, module hot spots, broken modules, 
string outages, and broken or misaligned trackers (if applicable). 
While it depends on the configuration of the specific plant, these 
types of failures each individually represent a loss of less than 
1% of the power output of a single inverter. The ability to 
supplement physical inspection with continuous monitoring 
based on available data would greatly improve plant reliability 
and affordability. The goal of the present work is to leverage 
existing sensor suites and data at large-scale PV plants to aid in 
operation and maintenance by improving the ability to detect 
and diagnose subtle failures in relative real-time. The focus is on 
the DC collector side of the plant where there is an abundance 
of data available for analysis and the faults and failures are 
typically more subtle and harder to detect than those impacting 
central inverters. 

II. MONITORING AND DIAGNOSTIC CHALLENGES 

Due to the variability in site architecture at PV plants, 
developing a standardized M&D approach can be very difficult. 
The numbers of modules, strings, combiner boxes, and inverters 
vary; panel and inverter hardware vary; solar irradiation and 
other weather varies; racking (e.g., fixed, single-axis tracking) 
and orientation varies. Determining how a plant should perform 
from one day to the next becomes an onerous M&D activity that 
is often outside the expertise or time constraints of most utility 
M&D centers. Considering current, voltage, and tracker 
channels (if applicable) at a large-scale PV plant, monitoring 
centers are typically evaluating signals from tens of thousands 
of sensors or more.  



 

 

Many subtle issues go unnoticed either indefinitely or until 
they become severe enough that they must be fixed. Due to the 
physical size and remote location of many PV plants, routine 
inspections are not performed frequently as they require a large 
amount of employee hours to perform [5]. As a result, even 
when degradation is expected, locating the source of the power 
loss to a specific section of the plant can be a nontrivial task. 
Periodic IR and visual overscans help in this effort, but as they 
are often performed on an annual basis many failures go 
undetected for weeks to months at a time. 

The developed fault detection method addresses these 
challenges by comparing measured data from the plant to 
performance calculated by a physical model of the plant coupled 
with feature extraction. This modeling approach provides the 
opportunity to leverage all the data currently being measured to 
find periods and locations of underperformance. While the 
proposed method is still reactive, it moves maintenance towards 
an analytics-driven, condition-based approach. 

III. FAULT DETECTION WITH PV PLANT DATA 

A. Performance Model Framework 

Fig. 1 shows the general workflow of the developed fault 
detection model. There are three key components to the model: 
the physical plant model, cleanup of measured data, and 
comparative analysis between the model and measured 
performance and among similar components at the plant. The 
physical models have been developed using pvlib-python, an 
open-sourced software administered by Sandia National Lab [6], 
[7]. This software package was chosen due to its extensive and 
robust hardware library that allows for accurate replication of a 
commercially operating plant. Additionally, the pvlib-python 
package allows the user to specify plant configuration 
information, such as the number of modules per string and 
number of strings per array, which allows for performance 
calculations specific to the user defined system. When site 
specific weather data is available, as is the case at most large-
scale PV plants, the models can be used to calculate expected 
current, voltage, and power for each modeled subarray. This 
functionality allows for site specific modeled performance that 
accounts for weather conditions experienced at the plant rather 
than relying on clear sky models to calculate expected 
performance. 

B. Data Cleanup 

The next key step of the analysis process is cleanup of the 
measured data. The following simple rules were arrived at 
through iteration with the models, are easy to apply, and reduce 
false alarms: 

• Remove points with plane of array irradiance below 
500W/m2 

• Remove points with solar elevation below 30° 

• Remove known bad data points 

These filters have the greatest impact when applied in 
tandem with each other. The first two filters primarily remove 
points early and late in the day (and overnight). At low solar 
elevation, adjacent rows tend to self-shade which adds a large 
degree of noise to the data for these time periods. Removing 

known bad values from the dataset also significantly reduces 
noise in the data. These values are typically values that are 
outside the bounds of the sensors measuring capabilities and any 
null readings that come from any of the sensing hardware (for 
example, many data historians have a “time out” value that 
indicates that no data is being logged). Other data quality filters 
than can be applied are detailed in [8]. 

Typically, inverter max power point trackers will shift the 
DC operating point of an array to match the power rating of the 
inverter hardware, resulting in DC clipping. As a result, the 
appearance of a fault is present in the DC power output of an 
array since the DC power output will be low relative to its 
expected output. If analysis is being done on the DC power 
output of an array, it is recommended that any points where the 
DC power is 99% or greater than the inverter rating be removed 
from analysis. 

C. Cloud Detection 

Another data cleanup step that is used is a cloud detection 
filter on the data. Transient cloud cover adds a significant 
amount of noise to PV data, and removing this data provides a 
much cleaner dataset for further analysis. This functionality is 
provided within pvlib-python and is described in [9] and [10]. 
The application of the pvlib-python cloud detection thresholds 
was modified to increase performance across differing site 
architectures. 

Through further usage of the modified cloud detection 
algorithm from pvlib-python, the method proved to be too 
aggressive in its filtering, often filtering seemingly clear sky 
irradiance data as “cloudy”. The main driver for this 
overclassification of cloudy data was determined to be caused 
by a significant difference in the clear sky model of irradiance 
used by pvlib-python to perform cloud detection and the on-site 
measurements. An example of this difference is shown in Fig. 2. 
Due to this difference, a new method for filtering data based on 
cloud cover through comparison to historical, locally measured 
irradiance data was developed. 

The new filter uses statistical methods and predictions based 
on a polynomial regression of historical plane of array (POA) 
irradiance measurements to filter out cloudy data. The 
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Fig. 1. Physical model framework for detecting faults at PV plants. 



 

 

architecture for the new clear sky filter is shown in Fig. 3. For a 
given day, the POA timeseries is first statistically filtered to 
eliminate points with erratic or rapidly changing POA signal. 
The underlying assumption is that POA measurements should 
vary smoothly with time in the absence of cloud cover. The 
remaining data is then regressed with a 4th-order polynomial to 
calculate a prediction of the clear sky irradiance. Depending on 
the amount of data removed from the first round of filtering, data 
from previous days is overlaid on the current day and included 
in the regression. Then, a second filtering step eliminates data 
points which deviate from both the predicted clear sky irradiance 
value and slope by a significant margin at each point in time, 
adding datapoints to the initial filter. Optionally, this prediction-
filter step can run in a loop, adding points to the filter with each 
iteration. 

To create the cloud detection filter for a given day, first, the 
derivative of the POA irradiance values is calculated for each 
datapoint over the course of a day. Then, the standard deviation 
of the derivative is calculated for a five-minute moving window 
centered on each time step. This standard deviation is 
normalized by the maximum POA value in the entire timeseries, 
and all points with a standard deviation greater than 1% of the 
maximum POA irradiance value are filtered out. This initial 
statistics-based filter is applied to each day in the dataset. The 
effect of this statistics-based filter on an example day is shown 
in Fig. 4. 

For each day, this filtered irradiance data is used to create a 
prediction of clear sky POA irradiance based on a polynomial 
regression of data. The 4th-order polynomial is suitable because 
it can closely fit nearly any daily solar profile, regardless of 
location, tracking system, or orientation. The previous six days 
of filtered POA data is also included in the regression, 

dramatically improving the accuracy and reliability of the 
prediction on cloudy days. Due to changes in sunrise and sunset 
from day to day, six historical days of data was chosen as the 
upper limit for the time window for data inclusion to keep the 
endpoints in the measured daily POA curves from drifting too 
far apart from each other. An exception is made for individual 
days in which more than 75% of data remains after the initial 
statistics-based filter. On these days, the regression uses only 
data from the current day to regress the 4th-order polynomial. 

An example of the improvements to the regression provided 
by increasing the number of days in the regression is shown in 
Fig. 5. This figure shows three regressions overlaid on the 
filtered data shown in Fig. 4. Each line represents a regression 
model including differing amounts of historical data in the 
irradiance regression. As Fig. 5 shows, a larger amount of data 
leads to a more accurate prediction of clear sky irradiance. 

The trained 4th-order regression model is used to create a 
prediction of the clear sky POA for the current day. To further 
improve the predicted clear sky value, the filtered data is subject 
to an additional round of filtering, incorporating the results from 
the clear sky regression. First, the slopes of expected clear sky 
irradiance and measured irradiance are calculated over a nine-

 

Fig. 2. Discrepancy between measured irradiance and the clear sky model. 

 

Fig. 3. Process for filtering measured POA data to create a data-based 

expected clear sky irradiance prediction. 

 

Fig. 4. POA irradiance for an example day highlighting the impacts of the 

initial statistics-based filter. 

 

Fig. 5. Results of the 4th-order regression of POA irradiance as the number of 

days included in the regression increases. 



 

 

minute interval, centered at each time step. The final filter 
assesses the difference in both values and slopes of the measured 
POA and the predicted clear sky POA at each time step. Values 
which fall more than 20% below the predicted value (normalized 
to the maximum value in the dataset) are removed. Time steps 
with a slope deviating by more than 50° from the predicted slope 
are also removed. 

The remaining values in the timeseries are again regressed 
in a 4th-order regression model to update the prediction and 
iterate the second stage of filtering. Through testing of this clear 
sky modeling approach, it was found that only one iteration of 
the regression and 2nd stage of filtering was necessary for the 
clear sky filter to reach a stable state. 

Fig. 6 shows the results of the prediction-based filter, with 
the red line approximating the 20% difference threshold for the 
difference in expected and measured POA values. The points in 
red represent those that passed the original statistics-based filter 
(shown in Fig. 4) but fall outside the thresholds for either 
predicted value or slope differences and were removed by the 
prediction filter. Near the peak of the curve, a small number of 
datapoints are eliminated based on the deviation in slope though 
they are still close to the predicted value. 

This new filtering approach shows an improvement in 
performance over original detection method from pvlib-python. 
Comparison on a full year of POA data from a single site, 
counting only daytime data, shows that the two filters yield the 
same result (pass or remove) for 77.5% of the entire series. The 
filter results differ on the remaining data points, with 16.2% of 
data points filtered only by the pvlib-python approach, and only 
6.3% of data points remove by the new filtering approach. These 
results are listed in Table I. A significant portion of the data 
filtered only by the pvlib-python method represent inappropriate 
filtering of clear sky irradiance values. This is observable in Fig. 
7a for a relatively clear day, in which the green datapoints 
represent datapoints which were removed by pvlib-python filter 
but passed the new filter. Similarly, many of datapoints that were 
not filtered by the pvlib-python method should have been 
removed. This is most often the case for short duration cloud 
events, exemplified as the blue points in Fig. 7b. 

The 4th order polynomial regression provides a significantly 
better expected clear sky POA signal based on historical data. 
This result greatly reduces false positive filtering of clear 
datapoints and provides more available data, post-filtering. The 
regression-based filter also slightly improves filtering of short 
duration cloud events. 

D. Feature Extraction 

Finally, feature extraction analysis is performed between 
cleaned, measured data and the expected, model prediction. The 
pvlib-python model provides estimated values of expected 
operating voltage, current, and power as well estimates of each 
subsystem’s short-circuit current (Isc) and open-circuit voltage 
(Voc). This information can be used to construct a rough 

 

Fig. 6. The results of the additional filtering on expected cloudy points. 

TABLE I.  SUMMARY AND COMPARISON OF CLEAR SKY FILTERS 

APPLIED TO DAYTIME DATA. 

 
 New Filter Classification 

 

 
 Cloudy Clear 

 

Pvlib-python 

Filter 

Classification 

Cloudy 28% 16.2% 44.2% 

Clear 6.3% 49.5% 55.8% 

  34.3% 65.7%  

 

 

 

Fig. 7. Sample results comparing the original pvlib-python cloud filter to the 

new filter for a) a day where the original filter misclassified a majority of the 

data as cloudy and b) a day where the original filter missed some periods of 

cloud cover. 

 



 

 

approximation of the expected I-V curve of the modeled 
subsystem. As different hardware failures have real impacts to 
the subarray’s measured current or voltage (or both), it follows 
that the shape of the subarray’s I-V curve would be impacted as 
a result of the failure [11]. The two sources of information are 
used to calculate derived metrics that are used in further anomaly 
detection. These derived metrics are compared among similar 
hardware components, where any detected anomalies are 
assumed to be indicative of a fault present at the PV plant. This 
analysis is performed on a day-by-day basis to ensure that 
adequate data is available to perform the necessary fault 
detection. This fault detection method has been applied to 
several datasets from many plants of varying sizes and 
geographic locations with success. 

IV. RESULTS 

A. Historical Datasets 

Historical data was provided for six different large-scall PV 
plants across the southern US, representing a wide range of plant 
architectures. These plants covered a broad range of several 
defining characteristics, including: 

• Location – southeastern US to southwestern US 

• Power generating capacities – 10+ MW to 200+ MW 

• Number of inverters on site – 20+ to 120+ 

• Number of combiner boxes per inverter – <10 per 
inverter to 20+ per inverter 

• Number of strings per combiner box – <10 to 90+ per 
combiner box 

• Specific inverter hardware 

• Specific module hardware  

Each of these sites has single-axis trackers across the DC 
collector field.  

The data provided for each site consisted of an extremely 
large number of data channels, spanning several months to more 
than a year of data per site. The following measurements were 
extracted from site historians and were available for fault 
detection analysis: 

• Inverter DC power, current, and voltage for all inverters 
on site 

• Combiner box DC current for all combiner boxes on site 

• Meteorological measurements (POA irradiance, ambient 
temperature, and wind speed) for all meteorological 
stations at each site 

• Tracker positions for all tracker controllers at each site 

For each plant, a physical model was built to match the site 
architecture to calculate expected performance using the 
meteorological data provided at each plant. The modeled 
performance data was then compared to measured data at each 
combiner box to perform the fault detection analysis. 

B. Validation 

To validate the fault detection method, historical data was 
extracted from each plant for time periods concurrent with 
previously performed aerial IR and visual scans. These aerial 
scans were performed by a third party to notify the plant of 
failures impacting their hardware. These scans identified a wide 
range of failures, including tracker-related failures, sectional, 
string, and partial string outages, and a number of failures that 
singularly impact individual modules. These failures were 
aggregated to the combiner box level to match the granularity of 
sensor data that was available at each site. Each combiner box 
was then labeled by the failure that was anticipated to have the 
most impact to the sensor measurements. In general, tracker-
related failures have the greatest impact to power input, followed 
by sectional and string outages, while module and sub-module 
failures will have the smallest impact to the combiner box 
measurements. 

For validation purposes, it was assumed that the failures 
found by the aerial scans were completely correct, both in terms 
of failures being present and absent. Each dataset was processed 
through its respective model to calculate expected current and 
voltage measurements for each combiner box at the plant. The 
potential faults identified by the physical model were then 
validated against the failures identified by the aerial IR scans to 
determine true and false positive rates. Two of the sites had 
scans available for two consecutive years. In all, this allowed for 
eight different validation datasets. 

C. Confusion Matrix Development 

For each plant, the respective fault detection model was run 
on site data concurrent to the aerial scan to determine if a fault 
may be detectable at the combiner box level using historian data 
alone. The results from the fault detection model were then 
joined to the results from the aerial scans. Using the fault 
detection results and the aerial scans, a confusion matrix was 
constructed for each dataset to assess the accuracy of the fault 
detection model. For the purposes of this paper, the confusion 
matrix results are defined as follows: 

• True positive – both the aerial scans and the fault 
detection model noted a fault, within a given combiner 
box 

• False positive – the fault detection model noted a fault 
while the aerial scans did not, within a given combiner 
box 

• True negative – neither the aerial scans nor the fault 
detection model noted a fault, within a given combiner 
box 

• False negative – the aerial scans noted a fault while the 
fault detection model did not, within a given combiner 
box 

The fault detection model detects the presence of faults on a 
day-to-day basis. Sample results for a single inverter are shown 
in Fig. 8. This figure shows how the confusion matrix 
classification changes for each combiner box over the course of 
a week. One observation is the generally steady state of the fault 
detection results; the model does not repeatedly bounce between 
faulted and unfaulted states. This time component has not been 



 

 

heavily analyzed to-date but could be used as part of the 
detection model to determine the presence (or lack) of faults. 
Additionally, since the presence of faults are evaluated on a day-
by-day basis, this analysis method allows for the detection of the 
onset of faults. If implemented in a near real-time environment, 
this method could notify operators of faults as they happen, an 
improvement over the typically annual aerial inspections. 

Since the aerial scans only reflect the state of the hardware 
on a single day, the remaining analysis in this paper is focused 
only on the fault detection results on the day of the scan. A 
potential next step is to consider how the time-based change in 
fault detection could be included to improve the accuracy of the 
fault detection model. 

D. Fleet Summary 

For each dataset, the results of the fault detection model were 
joined with the results of the aerial scans. To characterize the 
types of failures that were accurately detected by the model, the 
aerial scan results were categorized into three types: minor 
failures, string outages, and tracker failures. A listing of the 
failures in each of these categories is shown in Table II. In short, 
minor failures impact one to a few modules, string outages 
impact one to a few strings, and tracker failures are failure of 
individual tracker controllers and impact multiple strings. 

The results from all datasets are summarized in Table III. 
Note that several sites in the summary are lacking tracker 
failures. Depending on the site, this is due to either a lack of 
labeling of tracker failures or a lack of tracker failures. 

As shown in Table III, this fault detection method has 
consistently shown true positive rates at 75% or higher for string 
outages when validated against aerial IR scans performed the 

 

Fig. 8. True positive, true negative, false positive, and false negative 

classifications for fault detection for a single inverter. The aerial scan was 

performed on Day 5. 

TABLE II.  SUMMARY OF LABELS APPLIED TO EACH FAILURE. 

Summary Category Failures 

Minor 

Cell Faults 

Hot Spots 

Module Anomalies 

Sub-module Anomalies 

String Outage 
String Outage 

Sectional Outage 

Tracker 
Tracker at stow 

Tracker anomaly 

 

TABLE III.  FAULT DETECTION TRUE AND FALSE POSITIVE RATES. 

Site 

True and False Positive Rate Summary 

Fault Type TPR FPR 

1 

Normal - 36% 

Minor 34% - 

String 100% - 

Tracker 77% - 

2a 

Normal - 39% 

Minor 44% - 

String 88% - 

Tracker 74% - 

2b 

Normal - 44% 

Minor 44% - 

String 90% - 

3 

Normal - 67% 

Minor 86% - 

String 67% - 

4 

Normal - 32% 

Minor 41% - 

String 54% - 

Tracker 56% - 

5a 

Normal - 7% 

Minor 92% - 

String 88% - 

5b 

Normal - 30% 

Minor 33% - 

String 91% - 

6 

Normal - 50% 

Minor 82% - 

String 92% - 

 



 

 

same day. Depending on the site architecture, these faults 
individually represent approximately a 1% loss of power output 
at the inverter level and are the types of faults that are small 
enough to go unnoticed when monitoring inverter and plant 
power outputs and, when considered in aggregate, are one of the 
largest sources of power loss detected by aerial overscans. The 
fault detection method shows good detection rates for these 
faults, but, unlike aerial scans, is able to perform fault detection 
analysis on an ongoing basis. An overall summary of the fault 
detection method is shown in Table IV. The overall true positive 
rate across all faults and all eight datasets was 66%. The true 
positive rates for the faults with the largest impact to plant power 
production are significantly higher: 88% for string outages and 
73% for tracker faults. Even the minor faults, which only impact 
a single module, where detected with approximately a 50% true 
positive rate. With additional tuning of internal detection 
thresholds, these results are expected to improve. 

V. CONCLUSIONS 

The results discussed above show the strength of using a 
physical model in conjunction with real PV data to perform fault 
detection on DC collector field data. Currently, many sites only 
perform aerial scans annually, which limits their insight into the 
presence of subtle, small-scale faults. The developed fault 
detection method operates on data that is typically available at 
M&D centers on a continuous basis and is capable of providing 
reliable fault detection year-round. Additionally, the detection 
locates faults to specific combiner boxes, reducing the field 
inspection effort of locating the fault when maintenance needs 
to be performed. With real time results, M&D centers could 
leverage this fault detection model to schedule maintenance as 
issues arise, rather than wait for the next annual scan to notify 

them of hardware failure. Production, and therefore revenue, is 
reduced when these failures are undetected and uncorrected. 

To ensure that operators do not become burdened by 
attempting to diagnose false alarms, future work is aimed at 
reducing the false positive rate while keeping the true positive 
rate high. One approach will be to consider how day-to-day 
variations in the fault detection results can be leveraged to 
determine if a fault is truly present. Additionally, more tuning of 
the internal fault thresholds could lead to potential 
improvements in true and false positive rates. 
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TABLE IV.  OVERALL SUMMARY OF THE FAULT DETECTION MODEL. 

Fault Type TPR FPR 

Overall 66% 28% 

Normal - 28% 

Minor 45% - 

String 88% - 

Tracker 73% - 

 


