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ABSTRACT 
Selecting the appropriate level of filtration for a gas turbine  

helps to minimize overall unit costs and maximize net revenue. 
When selecting a filter type and configuration, one must 
consider the initial costs, operational costs, and ongoing 
maintenance costs for both the filter and corresponding impacts 
on unit performance. Calculations are complex, and a fully 
functional framework is needed to properly account for all 
aspects of the life cycle and provide an opportunity to optimize 
filter selection and water wash scenarios for specific plant 
operating conditions. Decisions can generally be based on 
several different criteria.  For instance, one may wish to 
minimize maintenance costs, maximize revenue, minimize fuel 
consumption, etc. For criteria that can be expressed in monetary 
terms, Life Cycle Cost Analysis (LCCA) is a means to 
simultaneously consider all criteria and reduce them to a single 
parameter for optimization using present value arithmetic. To 
be practically applied, the analysis must include all the 
significant inputs that would have an impact on the relative 
comparison between alternatives, while excluding minor inputs 
that would unduly add to complexity. 

This paper provides an integrated, quantitative, and 
transparent approach to life cycle cost analysis for gas turbine 
inlet filtration. Most prior art tends to focus either on how to 
perform the life cycle cost analysis (with simplified 
assumptions on the impact of filtration on performance), or on a 
specific technical aspect of filtration such as filter efficiency 
and performance, the impact of dust on compressor blading and 
fouling, or the impact of fouling on overall gas turbine 
performance. Many of these studies provide useful insight into 
specific aspects of gas turbine degradation due to fouling, but 
make simplifying assumptions that can lead to inaccuracies in 
application. 

By heavily leveraging prior work, this paper provides the 
reader with an overview of all aspects of the functionality 
required to perform such a life cycle analysis for gas turbine 
filtration. This work also serves as a technical summary of the 
underlying physics models that lead to the development of 
EPRI’s Air Filter Life-Cycle Optimizer (AFLCO) software. The 
software tool  provides a method to account for the influence of 
gas turbine type, operating conditions, load profile, filtration 
choices, and wash type and frequency on overall life-cycle 

costs. The AFLCO tool is focused on guiding the user to make 
optimum filter selections and water wash scheduling, 
accounting for all the significant parameters that affect the 
economic outcome. Revenue and cost quantities are considered 
simultaneously to determine the net present value of gross 
revenue minus filtration and water wash costs over a multiple 
year analysis period. The user defines the scenarios and the 
software displays the net present value (NPV) and present value 
difference between the scenarios. The preferred configuration 
from an LCCA perspective is that which yields the highest  
present value for net revenue. The user can iterate on multiple 
scenarios to seek further increases in NPV.  The paper provides 
relevant example case studies to illustrate how LCCA 
evaluations of inlet air filters and water wash frequency can be 
applied to optimize gas turbine economic performance. 

The intent of the paper is to provide the user with a 
summary of prior work that can be integrated to provide a more 
holistic, complete life cycle cost analysis and describes the 
framework used within the AFLCO software. The underlying 
technical analysis in this paper can be applied to any life cycle 
cost analysis. 

INTRODUCTION 
Air filtration as applied to gas turbines is not new, and it is 

well known that even a minimum level of filtration 
significantly protects against erosion and corrosion of the 
compressor blading [1]. More recently, there has been a trend of 
installing higher efficiency level filtration in gas turbines to 
increase the level of compressor performance retention [2]. 
Recent studies have shown that increasing filtration efficiency 
levels to High Efficiency Particulate Air (HEPA) significantly 
improve long term compressor performance and unit power 
output [3,4]. 

While methods for evaluating the performance and cost 
benefits of higher efficiency filtration are documented, they 
must be considered in the context of total unit costs and 
revenue. When selecting a filter type and configuration, one 
must consider the initial costs, operational costs, and ongoing 
maintenance costs for both the filter and corresponding changes 
in unit performance that impact revenue. Calculations are 
complex, and a comprehensive framework is needed to 
properly account for all aspects of the life cycle and provide an 



2 Copyright © 2018 by ASME 

opportunity to optimize filter selection and water wash 
scenarios for specific plant operating conditions. Life Cycle 
Cost Analysis (LCCA) is a means to simultaneously consider 
all quantifiable criteria and reduce them to a single parameter 
for optimization using present value arithmetic. To be 
practically applied, the analysis must include all the significant 
inputs that would have an impact on the relative comparison 
between alternatives, while excluding minor inputs that would 
unduly add to complexity. Multiple studies assume the gas 
turbine performance retention capability of upgraded filters, 
without data or analysis to substantiate the predictions, or 
without information on how to apply the result to sites other 
than the specific one being investigated [5,6,7,8]. Many other 
examples exist that evaluate the post-install impact and life 
cycle cost of upgrade filtration, but do not provide insight into 
how specific filtration choices were made [3,9]. The motivation 
behind creating the AFLCO software was to address these 
shortcomings and develop a filtration life cycle analysis method 
capable of predicting the cost impact of filtration for any gas 
turbine, filter, and operating location before installation and 
operation. The method should provide intelligent default 
assumptions, while allowing the user to customize the 
assumptions to a specific site, dependent on the level of 
available data and prior knowledge. 

Based on the referenced prior work, filter selection is often 
performed in a somewhat ad-hoc manner. Performance 
improvement estimates may be gleaned from prior studies, the 
filter costs obtained from the filter OEM, and the filter lifetime 
estimated based on an assumed replacement schedule. The 
engineer or analyst performing the LCCA is even likely to 
follow a structured process [10]. However, there is also a need 
for a structured, standardized LCCA tool that provides a 
method for performing a filter selection analysis in a systematic 
and traceable manner with the intent of aiding in the filter 
selection process. EPRI has created the Air Filter Life Cycle 
Optimizer (AFLCO) software to address these industry needs 
[11]. This paper describes many of the key algorithms and 
processes within the software and provides useful example 
cases studies. 

When constructing the AFLCO software, the authors 
reviewed the literature for prior work and sought to synthesize 
useful aspects of prior studies to develop an integrated method 
that encompasses several key areas: 
• Lifecycle Calculation Methodology
• Impact of Ambient Conditions on Filter Loading
• Impact of Filtration Efficiency on Compressor Fouling
• Impact of Compressor Fouling on Gas Turbine

Performance
Addressing the first bullet above, reference 10 provides an

extremely well-defined life cycle calculation methodology 
which the authors adapted for the work presented herein. While 
the framework of Reference 10 is suitable in terms of the 
various factors involved in life cycle cost analysis, it makes 
several simplifying assumptions that make it difficult to apply 
to sites without existing data. For example, a calculation 
method is provided to calculate the impact of gas turbine 
degradation on fuel cost and revenue from power generation; 
however, no method is provided for estimating the impact of 

wash frequency or filtration level on degradation rates. For this 
reason, the authors chose to use Reference 5 as a framework 
and incorporated additional modeling features described in the 
rest of the paper. 

INPUT PARAMETERS 
When evaluating air filtration options, there are several 

major contributing factors that should be considered. Each of 
these are considered as user defined inputs from the perspective 
of creating an LCCA software tool or process. 

Analysis Period 

The analyst should first consider the period over which to 
perform the analysis. Given that the typical change out 
frequency of pre-filters is 6-12 months and that a final filter 
stage may last for 5 years, the analysis period should be long 
enough to account for multiple filter replacement cycles. A ten 
to twenty-year analysis period would account for a significant 
number of filter change outs, off-line water washes, and 
associated variation in unit performance.  Thirty to forty years 
would be more than sufficient to account for costs over the life 
cycle of the project. The timestep resolution of the model over 
the analysis period may need to be as little as 12 to 24 hour 
increments if on-line water washes are modeled. 

Plant Configuration 

To make the results relevant to a particular unit or plant, 
the analysis needs to include the configuration of the plant, 
particularly the type of gas turbine and the bottoming cycle 
arrangement, if any (i.e., simple cycle, 1-on-1, 2-on-1 
combined cycle). Smaller gas turbines and those with higher 
compressor pressure ratios have been shown to be more 
susceptible to fouling. The steam turbine is impacted indirectly, 
as compressor fouling contributes to a reduction in gas turbine 
mass flow which in turn reduces combined cycle output. The 
number of gas turbines also drives filter replacement costs on a 
plant-wide basis. 

Operating Profile 

The operating profile includes information on the service 
factor and type of duty (peaking, cyclic, baseload). To simplify 
the variation in load profile that occurs throughout the day and 
year, the algorithm divides the operating profile into two parts: 
full load and part load. Full load operation represents the 
maximum output that can be obtained, at the minimum heat 
rate, for given inlet conditions and extent of compressor 
fouling.  At part load, the power is fixed by the grid demand; 
therefore, focus is on heat rate and corresponding power 
production costs. Variations in compressor fouling at part load 
do not affect the gross revenue from power production, only the 
heat rate. For a given overall service factor, the percentage of 
operating time that the unit operates at full load is defined; the 
remainder of the operating time is assigned as part load. The 
average load level at part load (as a fraction of full load rated 
output) must also be specified. The analysis is then carried out 
on these two operating regimes independently for each time 
step. These three parameters: average service factor, percent of 
fired time at full load, and average load fraction when operating 
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at part load, can often be obtained from historical plant 
performance data or estimated based on the duty cycle.   

Economic Parameters 

Two key factors affecting the analysis are the electricity 
sales price ($/MWh) and fuel cost ($/MMBtu). While these 
factors can vary significantly, even over the course of a day, 
annual average values are used to reduce complexity of the 
analysis.  These parameters set the relative value of capacity 
and heat rate degradation due to filter pressure drop and 
compressor fouling, as well as their comparison with expenses 
such as filter replacement and water wash. Scenario 
optimization may be different depending on these values. 

Inflation/escalation rate and discount rate are also required. 
The inflation rate escalates costs and revenues into future years, 
whereas the discount rate brings all costs and revenues back to 
a single base year; its magnitude considers that a dollar could 
be invested elsewhere to achieve a return on investment. Both 
factors are necessary when considering long term financial 
analyses. The inflation rate can be estimated from historical 
data and most companies have a standard discount rate to use in 
these types of analyses. 

Air Filtration Options 

The fundamental job of the air filter is to take ‘dirty’ air 
and extract particulate matter, leaving the air exiting cleaner. 
There are three primary factors characterizing the performance 
of the filter: 
• Rated filter efficiency: The ASHRAE 52.2, EN 779, or EN

1822 rating of the filter provides the effectiveness of the
filter at removing particles of varying sizes.

• Filter loading: Depth loaded filters hold the particulate
matter removed from the incoming air stream. As the filter
loads, the pressure differential increases, impacting gas
turbine performance. Eventually, the filter must be
replaced. The increase in dust loading may also impact
filter efficiency; this is dependent on the specifics of the
particulate matter concentration and filter design.

• Operating environment: The operating environment in
which the gas turbine sits influences the size and
concentration of particles entering the filter. This directly
influences how quickly the filter loads and the
corresponding increase in pressure drop.

The analyst determines if the filter changeout occurs on a 
fixed schedule (i.e., every 6 months), at the end of the filter life 
(when it reaches its rated final pressure drop), or whichever 
occurs first. The analysis in AFLCO contains built-in 
correlations from an extensive test campaign to calculate filter 
pressure drop as a function of dust loading. This is described in 
more detail in the modeling section. 

Filter Replacement Costs 

The filter replacement cost is driven by the labor cost to 
replace, the number of filters per stage, and any initial capital 
cost required to accommodate the filters under consideration. 

Water Wash Profile and Costs 

Finally, any site considering a change in the filtration 
options should not do so without also considering potential 

changes to the water wash profile. Consideration should be 
given to whether washing is online and/or offline, the 
effectiveness of either wash type on removing built-up dust 
from the compressor, and whether the off-line washes are 
performed on a periodic basis (i.e., 4 times per year or every 
2,000 hours) or as needed (i.e., when compressor efficiency 
degrades more than 2%). Water and detergent costs should also 
be considered. 

ANALYSIS APPROACH AND MODELING 
While many calculations are required for an air filter 

LCCA, refer to Reference 10 for an overview of the economic 
calculations required. The calculations described therein are 
focused on engineering calculations that are most likely to be 
excluded from most LCCA due to the complexity involved. 

The general structure of the Air Filter Life Cycle Optimizer 
(AFLCO) is a time-dependent simulation that, for each 
timestep, first starts with a quantity or slug of air with an 
assumed ambient particulate matter concentration. This slug of 
air is passed through the filtration stages. The filter efficiency is 
used to remove a calculated amount of particulate which is then 
used to update the filter dust loading, efficiency, and pressure 
drop for the next time step. Once through the filtration stages, 
the cleaner slug of air is passed through the compressor where a 
deposition model is applied to determine how much of the 
remaining particulate is deposited on the compressor blading. 
Next, a performance model is used to relate the compressor 
dust accumulation to gas turbine performance changes. The 
performance is then used to estimate the economics for the 
current time step. Finally, any washes or filter changes are 
carried out and recorded in the economics or performance 
modules. A database of gas turbine data is used to estimate the 
impact of filter pressure drop on gas turbine flow rate, power 
output and heat rate at full load and part load. 

The following sections contain pertinent details of the 
ambient particulate concentration module, the air filter 
efficiency prediction calculations, and the compressor deposit 
and performance model. 

Ambient Particulate Matter Concentration 

The concentration of particulate matter in the air must first 
be estimated to start the analysis. If a detailed site measurement 
is available, this should be used; however, in most cases the 
particulate loading can be estimated from publicly available 
data. A two-step process is required. Most air quality monitors 
aggregate and report the measurements as PM2.5 and PM10. 
PM10 reports the cumulative concentration of small particles 
under 10 microns in size, and PM2.5 reports the concentration 
for particles under 2.5 microns in size. Within the U.S. the 
Environmental Protection Agency (EPA) tracks PM2.5 and 
PM10 concentrations across many sites, and uploads that 
information to a public database [12]. Europe also maintains a 
similar database [13]. PM data is available at a fairly granular 
level, including city and county level data. 

While these databases are useful for analyzing health 
impacts, a more detailed concentration profile is required for air 
filtration. This is because air filtration efficiency is a strong, 
non-linear function of particle size, as illustrated in Figure 1. 
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This variation is especially true for particle sizes under 2 
microns, which are also the most likely sizes to cause fouling of 
the compressor [14]. Given the large variation, especially for 
lower efficiency pre-filters (e.g., MERV 8 / G4), a more 
detailed distribution of ambient particulate matter is required to 
estimate the filter dust collection efficiency as a function of 
particle size. 

Figure 1: Example of Initial Filter Efficiency vs. Filter Rating 

Estimating the fractional filter efficiency is required to 
predict the dust accumulated within the filter, which impacts 
pressure drop and life, and to identify the particulate matter 
concentration entering the next filter stage or compressor. The 
particles captured and passing through are calculated through 
the following equation.  

This equation can be applied by multiplying a continuous 
function of filter efficiency and ambient particulate matter 
concentration; however, this level of resolution is rarely 
available. As a result, a binned approach is suggested which 
uses the filtration efficiency and average particulate 
concentration for a range of particle sizes. At a minimum, the 
particle geometric mean diameters for ASHRAE and EN testing 
standards are proposed as a minimum set of bins, listed in  
Table 1[15,16]. 

Table 1: Suggested Binning of Ambient Particle Concentrations 

Standard 

Geometric Mean 

Diameter (µm) 

Particle Size 

Range (µm) 

ASHRAE 

0.35 0.3-0.4 
0.47 0.4-0.55 
0.62 0.55-0.7 
0.84 0.7-1.0 
1.14 1.0-1.3 
1.44 1.3-1.6 
1.88 1.6-2.2 
2.57 2.2-3 
3.46 3.0-4.0 
4.69 4.0-5.5 
6.2 5.5-7.0 

8.37 7.0-10.0 

Once the bins are determined, a procedure must be put in 
place to map the reported PM2.5 and PM10 recorded values 
from the mentioned databases to the binned concentrations in 
Table 1. This requires assumed distributions for PM2.5 and 
PM10.  

Filter Efficiency and Pressure Drop Predictions 

ASHRAE and EN test standards provide efficiency and 
pressure drop information for different air flow rates and stages 
of filter dust loading. Air flow vs. pressure drop (resistance) is 
typically measured for a new and clean filter. Efficiency as a 
function of particle size is measured at various stages of dust 
loading. For each stage of dust loading, the pressure drop is 
also measured at a nominal flow rate. Six stages of dust loading 
are measured, one clean, one at end of life, and four in between. 
If the assumption is made that the change in pressure 
differential due to an increase or decrease in flow rate is 
independent of increase in pressure differential due to dust 
loading, then the following equations can be used to predict 
filter pressure drop as a function of dust loading and flow rate. 

The above equations are functions of the filter rating. This 
is not required, but is suggested if test data is available for a 
wide variety of filters. For the AFLCO model, a test campaign 
was conducted and a regression surface using an artificial 
neural network was used to create the functional relationships 
from the entire test data set. For this reason, dPFlow is a function 
of both the current airflow and the rated airflow. This allows 
normalization across various filter ratings, sizes, and 
manufacturers to create a general model. In essence, the % 
rated flow and filter rating are used to estimate the change in 
pressure drop relative to the rated flow. This change is then 
added to dPinitial to calculate dPFlow. 

To estimate dPFouling another neural network was regressed 
against the dust loading and filter rating. To standardize data 
across different filter manufacturers and filter dust capacities, 
the dust loading was normalized to values between 0 and 5. 
Zero represents a new and clean filter, five represents one that 
is fully loaded, and values in between are based on the actual 
dust loading, calculated in the equation below. 

The resulting regression allows prediction of dPFouling from 
the filter initial rating and current dust load status. A snapshot 
of this is shown in Figure 2, where changes in the DustLoad 
and initial MERV will predict the overall impact on pressure 
drop. This equation can then be used to predict the impact of 
filter dust loading, and thereby increased pressure drop, on gas 
turbine power output on a time-series basis. 

𝜂𝜂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐
𝑤𝑤𝑐𝑐𝑐𝑐𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑢𝑢

 𝑤𝑤𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑢𝑢 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑢𝑢𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑢𝑢�1 − 𝜂𝜂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� 

𝑑𝑑𝑑𝑑𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑑𝑑𝑑𝑑𝐹𝐹𝑓𝑓𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑𝐹𝐹𝑑𝑑𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑𝐹𝐹 
Where: 
𝑑𝑑𝑑𝑑𝐹𝐹𝑓𝑓𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓 ,𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝑤𝑤,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝑤𝑤,𝐹𝐹𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅) 

𝑑𝑑𝑑𝑑𝐹𝐹𝑑𝑑𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑𝐹𝐹 = 𝑓𝑓(𝐷𝐷𝐷𝐷𝐷𝐷𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝑑𝑑,𝐹𝐹𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅) 

𝐷𝐷𝐷𝐷𝐷𝐷𝑅𝑅𝑇𝑇𝑓𝑓𝑢𝑢𝑓𝑓𝑇𝑇𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝑑𝑑 =
𝐷𝐷𝐷𝐷𝐷𝐷𝑅𝑅𝐸𝐸𝑑𝑑𝑐𝑐𝑑𝑑𝑓𝑓𝐸𝐸𝑓𝑓𝑓𝑓

∗ 5 
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Figure 2: ANN Regression of Filter dP 

While generalizing test data to predict pressure drop is 
straightforward, creating a general filter efficiency regression 
(such as shown in Figure 1) is more difficult due to the non-
linearity of the filter efficiency curve. At a high level, the 
regression predicts particle removal efficiency as a function of 
initial filter rating, current dust loading state, and the geometric 
mean diameter of the particle. To create a stable regression, a 
binning of particle sizes is necessary, essentially creating a 
piecewise curve. The functional form is shown below. 

The outcome of this regression is a non-linear response 
surface capable of predicting filter efficiency for any particle 
size as the filter loads. An example of this is shown in the 
following charts: Figure 3 to Figure 5. Each of these plots 
shows the sensitivity of the point selected in cross hairs to the 
input parameters. The rightmost plot shows the actual filter 
efficiency curve. As expected, increasing the initial rating will 
increase the efficiency at a given diameter. Figure 3 shows the 
efficiency curve for a new filter with a MERV 8 (G4) rating. As 
the MERV rating is increased to 10, the filter efficiency will 
increase, as shown in Figure 4. Finally, as MERV is increased 
to 15, the efficiency has increased substantially and has also 
changed shape relative to the MERV 8 filter. This level of 
granularity allows for more accuracy in estimating the 
concentration of particles at varying sizes that eventually make 
it through the filtration stages and into the compressor.  

A general model such as this can be applied to any test set 
of filter data to create a general filter performance model. This 
can then be reused in a variety of analyses including those with 
a time-series dependency since filter efficiency and pressure 
drop are regressed to continuous functions of filter state and 
flow rate. When combined with the predicted ambient 
particulate matter concentration, the concentration of dust 
entering the compressor can be estimated and used to predict 
the performance impact of fouling. 

Figure 3: Predicted Filter Efficiency – MERV 8 (G4) 

Figure 4: Predicted Filter Efficiency – MERV 10 

Figure 5: Predicted Filter Efficiency – MERV 15 

Compressor Fouling Model 

Using the methods above for ambient particulate 
concentration and filtration efficiency prediction, the amount 
and concentration of particulate matter entering the compressor 
can be estimated. The challenge is then predicting (a) how 
much of the incoming particulate matter is deposited on the 
blades and (b) how much this impacts performance. A wide 
range of studies addressed one or the other of these issues, but 
none addressed both issues in a wholly integrated manner 
suitable for this level of general analysis. The problem is 
therefore deconstructed into its two constituent parts using 
appropriate studies from the literature. 

Estimating the deposition of dust within the compressor 
requires knowledge of the incoming mass concentration vs. 
particle size, the distribution pattern within the compressor, and 

𝑆𝑆𝐴𝐴𝑆𝑆𝑅𝑅 𝐵𝐵𝐴𝐴𝑅𝑅 = 𝑓𝑓(𝑑𝑑𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑃𝑃𝐴𝐴𝑅𝑅𝑆𝑆𝐴𝐴𝑆𝑆𝑅𝑅) �
0.3 𝑅𝑅𝐴𝐴 1.0 → 1
1.0 𝑅𝑅𝐴𝐴 3.0 → 2  

3.0 𝑅𝑅𝐴𝐴 10.0 → 3
𝐹𝐹𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝐹𝐹𝑓𝑓𝑓𝑓 = 
𝑓𝑓(𝐹𝐹𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅,𝐷𝐷𝐷𝐷𝐷𝐷𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝑑𝑑, 𝑆𝑆𝐴𝐴𝑆𝑆𝑅𝑅𝐵𝐵𝐴𝐴𝑅𝑅,𝐺𝐺𝑅𝑅𝐴𝐴𝐺𝐺𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑃𝑃𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴) 
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the tendency for dust to stick to compressor blading. The 
incoming concentration can be calculated using the methods 
described above. The distribution pattern within the compressor 
and the propensity of dust to be deposited on compressor 
blading can both be estimated from prior work. 

The first parameter to estimate is the fraction of incoming 
particles that are deposited on the compressor blading. Many 
technical papers address this, but most require comprehensive 
information on particle velocity and blade geometry, and tend 
to be suitable only for CFD simulations [17,18]. For performing 
an LCCA, a more simplified approach suitable for generalizing 
to many gas turbines is required. Here the work of Suman et al. 
is used to estimate the fraction of incoming particles that stick 
to each stage of the compressor [19]. Suman applies higher 
fidelity models to estimate particle deposition on blading and 
stators, but reduces this down to a damage index vs. particle 
size, shown in Figure 6. The damage index represents the 
fraction of incoming particles that stick to the suction and 
pressure side of the compressor blade. A critical aspect of 
Suman’s work is the assumption that the incoming air is first 
filtered using typical filter levels found in gas turbines; this 
makes the results directly applicable to the LCCA analysis. The 
results are further simplified for the current work by assuming a 
single value for both the pressure side and suction side over a 
range of particle sizes.  A value of 2.0 was selected based on 
calibration of the model with field results.  

Figure 6: Damage Index vs. Particle Size 

Once the deposition rate per blade is known, a distribution 
amongst stages must also be assumed. Prior work suggests that 
particulate dust loads proportionally from the first stage up 
through the sixth stage [20]. For the LCCA, a triangular 
distribution is assumed, using a fully linear distribution of dust 
from stage 1 to 6 when fully fouled. It is further assumed that 
dust first loads the stages equally, then proportionally to the 
front stages.  As the compressor loads, the incoming particulate 
matter only deposits on the earlier stages until the compressor 
is fully fouled. Table 2 shows the maximum proportional 
amount of dust that would be found on a fully fouled 
compressor. 

The incremental loading by compressor stage is modeled 
mathematically by mapping the loading to a fouling index. 
Table 3 shows the fraction of dust normalized to a completely 
fouled compressor vs. stage and fouling index which ranges 
from 0 (clean) to 6 (fully fouled). The compressor fouling 
model produces the expected behavior with more rapid fouling 

and impact on performance initially, followed by a reduced rate 
of drop in performance over time as the compressor fouls. 

To calculate the rate of deposition on each stage, particles 
larger than 2 microns are assumed to not contribute to fouling 
of the compressor. Then, the 2% of the incoming particulate 
matter concentration can be deposited on each stage, unless that 
stage has reached its respective maximum dust loading, as 
given in Table 3. 

Table 2: Dust Distribution in Fully Fouled Compressor 

COMPRESSOR 

STAGE 

MAXIMUM 

PERCENTAGE DUST 

1 29% 
2 24% 
3 19% 
4 14% 
5 10% 
6 5% 

Table 3: Stage Dust Loading vs. Fouling Index 

Stage

Fouling 
Index 1 2 3 4 5 6 Total 

0 0% 0% 0% 0% 0% 0% 0% 
1 5% 5% 5% 5% 5% 5% 29% 
2 10% 10% 10% 10% 10% 5% 52% 
3 14% 14% 14% 14% 10% 5% 71% 
4 19% 19% 19% 14% 10% 5% 86% 
5 24% 24% 19% 14% 10% 5% 95% 
6 29% 24% 19% 14% 10% 5% 100% 

Gas Turbine Performance and Compressor Fouling 

Using the previously described compressor deposition 
model, changes to compressor performance can be estimated, 
and then be correlated to changes in gas turbine flow rate, 
power output, and heat rate using conventional cycle analysis. 

Physically, particulate matter deposited onto the 
compressor blading changes the aerodynamic shape and 
increases surface roughness. This leads to reduction in 
efficiency and mass flow rate. Several studies have examined 
the impact of dust loading on surface roughness and efficiency, 
but studies of this level require information about flow 
velocities and compressor characteristics. A more simplified 
model is adapted for the filter LCCA. Tarabin describes a 
model that predicts the change in stage performance as a 
function of both the fouling degree and the unit size [21]. 
Smaller units with lower mass flow and units with higher 
pressure ratio have greater impact on performance due to 
fouling. Tarabin presents an “index of sensitivity to fouling” 
(ISF) which can be used to estimate the impact of a fouling 
increment on stage performance. The equation is shown below: 

𝐼𝐼𝑆𝑆𝐹𝐹 =
�̇�𝐺∆𝑇𝑇𝑢𝑢𝑓𝑓𝐹𝐹

(1 − 𝐴𝐴ℎ2)𝐷𝐷𝑐𝑐3
∗ 10−6 

𝑤𝑤ℎ𝑅𝑅𝐴𝐴𝑅𝑅 𝐴𝐴ℎ = 𝐶𝐶𝐴𝐴𝐺𝐺𝑑𝑑𝐴𝐴𝑅𝑅𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐻𝐻𝐷𝐷𝐻𝐻 𝑅𝑅𝑅𝑅𝑑𝑑𝐴𝐴𝐷𝐷𝐷𝐷 
𝑤𝑤ℎ𝑅𝑅𝐴𝐴𝑅𝑅 𝐷𝐷𝑐𝑐 = 𝐶𝐶𝐴𝐴𝐺𝐺𝑑𝑑𝐴𝐴𝑅𝑅𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐷𝐷𝐴𝐴𝑅𝑅𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴 
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All of these parameters are known or are easily estimated 
for common, large frame gas turbines.  For simplification, the 
delta temperature per stage is assumed equal, and each stage 
has equal polytropic efficiency. This assumption could be easily 
refined if better data were available. Once ISF is known for a 
unit, changes in stage performance can be estimated from the 
ISF and two empirical constants provided in Reference 21. The 
two equations below are used to estimate the change in the 
work done by the compressor rotor (kH) and the increase in 
pressure loss across the compressor stator within a single stage 
for a single increment of fouling (kp). 

The fouling model presented in Table 3 is used to estimate the 
fouling index for each stage by multiplying kH and kp by the 
fouling index for that stage. Once stage performance changes 
are estimated, a stage stacking model is used to modify the 
performance of each stage by lowering work done per stage or 
increasing stator pressure loss according to the coefficients 
calculated above. Morini provides a good discussion on stage 
stacking models [22]. Trade-off studies from Meher-Homji are 
used to relate the change in compressor performance to unit 
mass flow, power output, and heat rate [23]. 

MODEL SETUP AND CALIBRATION 
The AFLCO program contains two main analysis loops. 

The inner loop calculates the changes in GT performance as the 
unit operates and accumulates dirt in the filters and the 
compressor. This analysis is repeatedly performed over fixed 
duration time steps that are a function of a user-defined filter 
changeout schedule. There is an outer loop that executes the 
inner analysis loop, and then collects the unit performance 
metrics over that time step to translate them into the life cycle 
cost. For each time step, the compressor performance portion of 
the tool uses the specified ambient conditions to look up the 
particle size distribution. The default particle size distributions 
are estimated using average EPA reported PM10 and PM2.5 
emissions. Next, using the flow rate of the compressor 
calculated from unit type and average load conditions, the 
amount of dirt that accumulates on the compressor blading is 
calculated. The previously described empirical correlations are 
used to estimate the percentage of particles up to 2 microns that 
are deposited on the blade. Once the mass deposited on the 
blade is known, the change in compressor performance can be 
calculated using the described compressor fouling model. The 
result is an estimated change in compressor efficiency and flow 
rate which can be used to estimate average heat rate and power 
output over the time step. The dust mass accumulation over the 
time step in the compressor and each filter stage is saved as an 
input to the next time step. 

The AFLCO was calibrated to field studies performed by 
the authors and others, described in References 3 and 4. 
Calibration was performed by adjusting the particle deposition 

rate on the compressor and the rate at which the pre-filter 
efficiency changes due to dust loading. Results are described in 
the next section. 

CASE STUDY EXAMPLES 
Two case studies are performed to demonstrate the 

capabilities provided by an integrated analysis that considers 
ambient conditions, unit operating type and profiles, and filter 
and water wash characteristics. The first case study verifies 
AFLCO trends against a similar systematic study available 
from the literature. The second case study demonstrates the 
advantages of using an integrated analysis which considers, in a 
predictive manner, the direct impact of changing filtration 
options on compressor performance. Without this coupled 
analysis, the analyst would be forced to make gross 
assumptions on filter impact. 

Verification of Trends 

The combined sub-models were used in a time-varying 
simulation to estimate the degradation of a compressor over the 
course of a year. This was compared to trends presented in 
Reference 3 to see if the model reflects real world experience. 
The simulated unit was run at full load at 100% service factor 
to identify the impact of differing filtration options on power 
output and compressor efficiency degradation over the course 
of a year. The results are shown in Figure 7 and compare 
favorably to the results presented in Reference 3.  Although it 
was not possible to account for all parameter variations 
including ambient conditions and operating unit health, the 
trends in direction and magnitude provide confidence in the 
predictive capability of the method presented. 

Figure 7: Simulated Performance Degradation 

𝑤𝑤ℎ𝑅𝑅𝐴𝐴𝑅𝑅 𝐺𝐺 = 𝐻𝐻𝑅𝑅𝐷𝐷𝑅𝑅 𝐴𝐴𝐴𝐴𝑅𝑅𝑑𝑑 𝐺𝐺𝑅𝑅𝐷𝐷𝐷𝐷 𝑓𝑓𝐴𝐴𝐴𝐴𝑤𝑤 
𝑤𝑤ℎ𝑅𝑅𝐴𝐴𝑅𝑅 ∆𝑇𝑇𝑢𝑢𝑓𝑓𝐹𝐹 = 𝑇𝑇𝑅𝑅𝐺𝐺𝑑𝑑𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅 𝐴𝐴𝐴𝐴𝐷𝐷𝑅𝑅 𝑑𝑑𝑅𝑅𝐴𝐴 𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

∆𝑘𝑘𝐻𝐻 = 𝐺𝐺𝐼𝐼𝑆𝑆𝐹𝐹 
𝑘𝑘𝑐𝑐 = 1 + 𝑅𝑅𝐼𝐼𝑆𝑆𝐹𝐹 
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Case Study: Water Wash Schedule and HEPA Filtration 

A study was undertaken to demonstrate the value of the 
predictive algorithms to aid in filter selection while considering 
associated changes in off-line water wash schedules to optimize 
for net present value.  The integrated EPRI software tool, the 
Air Filter Life Cycle Optimizer, was used to perform the 
analyses. A 10-year period was analyzed with major pertinent 
assumptions listed in Table 4. 

Table 4: Major LCCA Case Study Assumptions 

Operating Profile 
Service Factor 80 % 

Operating Hours per 
Year 7,008 hours 

Percent Time at Full 
Load 80 % 

Percent Time at Part 
Load 20 % 

Average Load at Part 
Load 60 % of Rated GT 

Load 
Economic Parameters 

Average Electricity 
Sales Price 40 $/MWh 

Average Fuel Cost $3.00 $/MMBTU 
Spark Spread at Full 

Load (calculated) $22.73 $/MWh 

Inflation/Escalation 2.0 % 
Present Value 
Discount Rate 10.0 % 

Unit Information 
GT Type 7FA.05 - 

Configuration 2-on-1 
Total Plant output 693 MW 

The unit was assumed to operate in the northeastern U.S. in 
an urban environment, setting the assumed ambient particulate 
concentration. Three filtration scenarios were initially 
considered as shown in Table 5.  Nominal water and detergent 
costs were assumed.  Downtime to perform off-line water wash 
was assumed to impact total operating time each year. Initial 
results of the LCCA are shown in Table 6. 

Table 5: Case Study Filtration and Wash Assumptions 

Scenario 1 Scenario 2 Scenario 3 
Pre-filter 
Rating 

MERV 8 – 
G4 

MERV 8 – 
G4 

MERV 8 – 
G4 

Final Filter 
Rating 

MERV 14 – 
F8 

MERV 16 – 
E10 

ISO 25 E – 
E12 

Final Filter 
Cost 

$120 Each $150 Each $230 Each 

Pre-filter 
changeout 

Every 12 months or at End Of Life 

Final Filter 
Changeout 

End Of Life (Based on filter dP) 

Wash 
Frequency 

Offline – Every 3 months. No online wash 

Table 6: LCCA Results - Fixed Wash Schedule 

Scenario 1 Scenario 2 Scenario 3 
Power 

Produced 
(NPV) 

$1.745 B $1.773 B $1.775 B 

Fuel Costs 
(NPV) ($1.148 B) ($1.176 B) ($1.179 B) 

Water 
Wash 
Costs 
(NPV) 

($383,493) ($383,493) ($383,493) 

Estimated 
Downtime 
Per Offline 

WW 
(hours) 

12 12 12 

Estimated 
Revenue 
Loss Per 
Offline 
WW 

($82,143) ($82,130) ($81,947) 

Filter 
Change, 
Installa-
tion, and 
Capital 
Costs 
(NPV) 

($1,360,999) ($1,449,259) ($1,685,336) 

Total Val-
ue of Net 
Revenue 
(NPV) 

$595,512,174 $595,328,844 $593,757,390 

NPV Per 
Calendar 

Year 
$59,551,204 $59,532,871 $59,375,726 

NPV Per 
Operating 

Hour 
$8,498 $8,495 $8,473 

The results are presented as net present value which 
accounts for the time varying value of money using the 
assumed inflation and discount rates. The example shows that 
upgrading from F8 to E10 filtration somewhat counter-
intuitively reduces NPV of the plant.  Further upgrades to 
HEPA filtration in case 3 (E12) reduced NPV due to reduced 
power output and increased heat rate resulting from increased 
pressure drop and a slight increase in filter costs.  In this 
scenario, the optimum solution appears to be to maintain lower 
efficiency F8 filtration. However, the off-line water wash 
schedule should also be optimized within each scenario. If the 
machine is washed frequently, there is no advantage to 
advanced filtration since preventative maintenance is 
performed through water washes. Using the integrated AFLCO 
analysis, the study is repeated where the number of washes per 
year is varied to maximize NPV over the analysis period. In the 
NPV calculation, it is assumed that power production revenue 
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is reduced by the power that is not produced while the unit is 
being washed; this assumption can be changed in the software. 

The number of scheduled, offline washes per year is varied 
using the same operating assumptions; the resulting NPV over 
the 10-year period is shown in Table 7. The number of offline 
washes that maximize total NPV is shown in bold type.  

Table 7: Total NPV - Optimizing Off-line Wash Schedule 

Washes 
Per 

Year 
F8 E10 E12 

0 $594,381,677 $595,822,766 $597,190,330 

1 $596,010,814 $597,943,484 $596,317,033 
2 $596,442,529 $597,063,094 $595,458,158 
3 $596,121,846 $596,191,530 $594,606,814 
4 $595,512,174 $595,328,844 $593,757,390 

Several interesting trends emerge. First, for all three 
scenarios, the original analysis, which assumed the plant 
washed 4 times per year, shows that the offline wash frequency 
was too frequent from an economic perspective. The extra 
downtime resulting from washing decreases plant profitability 
from lost generating revenue. The configuration with F8 
filtration can be washed twice per year to optimize NPV, 
upgrading to E10 allows a reduction to one wash per year, and 
E12 HEPA filtration allows for elimination of frequent 
washing. Even more striking is that by optimizing the wash 
schedule, the increase in NPV enabled by upgrading the filters 
increases to almost $2,500,000. This should emphasize the 
importance to the reader of considering not only the direct 
impact of filtration on NPV, but of accounting for the shift in 
wash schedule on performance of the unit. Conducting such an 
analysis is extremely difficult without an integrated model that 
couples cost and performance of the ambient environment, gas 
turbine, and filtration. 

CONCLUSIONS 
An economic optimization of inlet air filter selection and 

water wash schedule requires a comprehensive calculation 
framework, accounting for all the major costs and performance 
impacts that affect net revenue of the unit or plant.  This paper 
described an LCCA approach that included modeling ambient 
air dust concentration and sizing, dust capture and filter 
performance, compressor fouling, gas turbine and combined 
cycle performance, and net present value accounting.  These 
concepts were implemented in the AFLCO software tool to 
assist electric utilities in their selection and optimization of 
filtration and water wash scheduling.   
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