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Artificial Intelligence

Whatever Computers 

Can’t Do

…Until They Can

http://www.epri.com/
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By the Numbers

Billion Dollars invested in ML                                   

startups between 2006 and 2016

New AI startups have raised their                                      

first round of equity funding since 2016

3096

2 

1100

505

AI companies with 55 major investors

Million Dollars invested by                                                

Corporate Venture Capital in 2016

An 80% growth as compared to 2015

http://www.epri.com/
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But…Where do we go from here?

“You’ve got to be very careful if you 

don’t know where you are going, 

because you might not get there.”

Yogi Berra

The Yankees

http://www.epri.com/
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Information through Analysis: Spectrum of Data Analytics

Prescriptive
Computer-Guided SME

• Integrated Technical / 

Environment / Business Data 

• Embedded Complexity

Operational
Computer-Assisted SME

• PI

• Advanced Pattern 

Recognition (APR)

• Model Development

• Alarm Limits

Predictive
SME-Validated

• Advanced Infrastructure

• Edge Analytics

• Prognostics / RUL

http://www.epri.com/
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Gas Turbine: Typical Monitoring & Challenges

Current Advanced        

Pattern Recognition 

Great Indicator of Differences 

Lacks Causation Indication

90%+ of Alarms Results in 

Model Retraining

Machine Learning &             

1st Principle Physics

Increased Sensitivities to 

Real/Actionable Issues

Allows for Computer Aided 

Diagnostics/Prognostics 

Requires Data and SME 

Knowledge

Analytically Guided Identification

Instrumentation Problems

Tuning/Performance Deviations

Hardware Issue Development

http://www.epri.com/


© 2019 Electric Power Research Institute, Inc. All rights reserved.w w w . e p r i . c o m7

Advanced Pattern Recognition AI

http://www.epri.com/


© 2019 Electric Power Research Institute, Inc. All rights reserved.w w w . e p r i . c o m8

An Example

APR will know this is a 

mallard duck, so all is normal!

APR will know it’s not a duck, but 

what is it? Should I be worried?

Let’s assume you train your APR 

on pictures of mallard ducks

http://www.epri.com/
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APR Training – Today (Generalized)

http://www.epri.com/


© 2019 Electric Power Research Institute, Inc. All rights reserved.w w w . e p r i . c o m10

Implementing AI Requires Solid Fundamentals In 

Place

http://www.epri.com/
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Pillars of Next Generation Monitoring and Diagnostics

Data

Collection

Storage

Aggregation

Analysis

Use

Experience

Grey Beards

Empirical Knowledge

Feedback

Record Keeping

Domain Experts

Modeling

Trending

Data Driven

Physics Modeling

Artificial Intelligence seeks to bridge the gaps between these pillars

http://www.epri.com/
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Example of Applying AI to Combustion Hardware

http://www.epri.com/
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Early Detection of Transition Piece/Liner Failure

▪ Detect damage early before forced 
outage

Typical Turbine Section Damage Due 

to Combustion Hardware Failure

http://www.epri.com/
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Data + Analytics: Information in Context

▪ Pathway was enabled by data
– Needed normal data

▪ 10 different units

▪ 6 to 24 months of data each

– Needed non-ideal data

▪ 20 different abnormal data examples

– Needed failure data

▪ Multiple failure types

▪ Pivotal for testing analytic capability Successful Analytics

Failure 
Data

Non-
Ideal 
Data

Normal 
Data

http://www.epri.com/
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% Of Total Gas Turbine Fleet

Duke

NextEra

Southern

Everyone Else

Fleet Size Implications (U.S.)
Aviation Power Gen

▪ Fleet Size: 6,871

– But ~2 engines per plane! (~14,000 total)

▪ Number of operations: 42,270 per day

▪ Number of operators and respective fleet size:

4 operators own 

50% of the assets

DATA SIGNIFICANTLY MORE CONCENTRATED IN AEROSPACE
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▪ 4,100 NG turbines across more than 
800 utilities! (as of 2017)

▪ Some part of larger groups – still data 
sharing issues due to regulations

▪ 3 largest U.S. utilities by market cap 
only own ~8% of NG gas turbines

~8%

% of Total Aircraft

Delta

United

American

Southwest

Everyone Else

http://www.epri.com/
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What Can Be Learned From Other Industries?

http://www.epri.com/
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So Where Is Everyone Else?

▪ No one is close to complete utopian integration of knowledge, modeling, and 
data for diagnostics

▪ Where is power-gen compared to aviation sector?
– Different sets of challenges

0 1 2 3 4 5 6 7 8 9

“Digital Readiness Level”

http://www.epri.com/
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Aviation – Advanced Diagnostics Challenges

Data

Models (and Analysis of Data)

Experience

787 generates 500 GB 

of data per flight Going back to basics –

combining 50 disparate IT 

systems through central 

data repository team

Sensor availability - GE 

helped with digital twin 

of landing gear – by 

adding additional 

sensors

Much more than just the engine to 

monitor

• Airframe

• Avionics

• Sensing Equipment

• Etc…

Paper accounts for 90% 

of airline records

One Million+ handwritten 

defect reports

$100 / MB 

using legacy 

in-flight data 

links

http://www.epri.com/
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Airline Success Stories

Additional 
sensors added to 
common failure 
points to 
correlate to 
operations

GE Digital Twin – Landing Gear

After observing 
distress –
correlated 
operating profile 
to suggested 
maintenance 
action

GE90 Fan Blade

Analyzed data of 
autopilot failures 
to develop bad 
altitude sensor 
early detection

Lufthansa Altitude Sensor Errors

Maintenance 
related 
cancellation drop 
from 5,212 to 123 
in 6 years

Delta Operational Efficiency

Maintenance 
related 
cancellation 
drops from 5,212 
to 123 in 6 years

Delta Operational Efficiency

▪ Noteworthy successes,
but all are post issue, 
diagnostics

▪ Large data sets aid in 
analysis

▪ There may be predictive 
catches, but aren’t being 
publically touted yet

▪ Establishes tolerance ‘bands’ 
for every part

▪ Part is pulled EVERY TIME 
measurements exceed band

▪ Rigorous inspection used to 
update tolerance – adjust limits

▪ Uses Smart Signal…

http://www.epri.com/
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Quick Summary of Archetypes of Machine Learning

http://www.epri.com/
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Artificial Neural Networks – What are they?

▪ Designed to mimic the connection of neurons in the human brain

▪ Nominally consists of 3-4 layers
(multi layer perceptron)

– Input layer

– One to two neuron layers (hidden nodes)

– Output layer

▪ Both deterministic and probabilistic types exist

▪ Static and ‘learning’ or updating models exist
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Artificial Neural Network - Uses

▪ Uses
– Fitting models to observed data
– Fitting models to computer generated data
– Classification

▪ Types

This Photo by Unknown Author is licensed under CC BY

http://www.epri.com/
https://www.codeproject.com/Articles/1215045/Introduction-to-Artificial-Neural-Networks?display=Print
https://creativecommons.org/licenses/by/3.0/
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Artificial Neural Network - Uses

▪ Pros

– Can adapt to discrete and non-linear responses

– Computationally efficient and portable once trained

– Can handle both discrete and continuous inputs simultaneously

▪ Cons

– Easy to over-fit 

– Can require more extensive data set for training

– Can be guess and check on network structure

http://www.epri.com/
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Artificial Neural Networks –

Common Functional Forms

▪ Input layer: Regression variables
▪ Hidden Layers contain activation functions
▪ Hidden Layers

(commonly one or two)

– Sigmoid 𝑓 𝑥 =
1

1+𝑒−𝑥

– Gaussian 𝑓 𝑥 = 𝑒−𝑥
2

– Linear 𝑓 𝑥 = 𝑥
– ArcTan 𝑓 𝑥 = atan(𝑥)
– Other variations, but all have similar characteristics shapes

▪ Output Layer
– Linear combination of last hidden layer

– 𝑌 = 𝑎𝐻1 𝑏𝑥 + 𝑐 + 𝑒𝐻2 𝑓𝑥 + 𝑔 +⋯

▪ Backpropagation algorithm solves for coefficients
-1
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http://www.epri.com/
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ANN Major Considerations - Overfitting

▪ Neural networks are more complex

▪ Overfitting can lead to erratic behavior

▪ Provides inconsistent predictions away from training points

▪ Can cause issues if used in numerical simulation (including APR)

– Most models work better if underlying functions are smooth with slowly 
changing gradient

– Fortunately most engineering problems are also 1st or 2nd order

▪ Another reason training data quality is critical

– A neural network can fit the data if given enough degrees of freedom

http://www.epri.com/
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Clustering Algorithms - Uses

▪ Uses
– Unsupervised learning

▪ Common Types
– K-Means
– Hierarchical
– Normal Mixtures

▪ Pros
– Useful when functional form of data is not known or hard to 

define (does not mean it does not exist!)
– Easy to use and understand

▪ Cons
– Lack good ability to extrapolate
– Choosing the number of clusters can be difficult
– Geometrically based!
– Dependent on magnitude of data if data not normalized
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Clustering Types: K- means

▪ One of the more common types is called k-means clustering

▪ Forms clusters on k (user selected) means in the dataset

▪ As an example define boundaries for peaking, cycling, and baseload operation based solely on data

K-Means Clustering Process (3 clusters)
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Step 3: Calculate 
centroid (c.g.) of 

each cluster
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Step 4: Re-cluster 
on centroid –

repeat 2 – 4 until 
converged

http://www.epri.com/
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Classification Algorithms – Uses

▪ Uses
– Appropriate when training dataset already ‘tagged’

▪ Types
– Logistic Regression
– Naïve Bayes Classifier
– K-Nearest Neighbors
– Decision Trees
– Neural Networks

▪ Pros
– Several options available
– Conceptually easy to understand
– More complex functional forms available

▪ Cons
– Relies upon prior knowledge of group membership
– Some are geometrically based
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Classification Example Applications – K Nearest Neighbors

▪ Similar to clustering approach, except response is the average of the k-
nearest neighbors

▪ For a new point – finds k nearest neighbors
▪ Largest number of matches yields class association
▪ Choosing the right k is trial and error
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• Assume k set to three

• New point at X

• 3 nearest neighbors are two blue and 
one green

• Membership is blue

http://www.epri.com/
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Bayesian Networks – What Are They?

▪ Follows Bayes Theorem:

– 𝑃 𝑌|𝐹 =
𝑃 𝐹|𝑌 𝑃 𝑌

𝑃 𝐹

▪ The power behind Bayesian Networks lie in the fact that:

– Prior beliefs can influence posterior (future) thinking based on new 
observations

– Allow for model to learn over time as new data becomes available

– Probabilistic

http://www.epri.com/
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Bayesian Networks – A Simple Example

This Photo by Unknown Author is licensed under CC BY-NC-ND

Have Kids? Yes: No: Over 40? Yes: No:

𝑃 𝑂𝑣𝑒𝑟 40|𝐻𝑎𝑣𝑒 𝐾𝑖𝑑𝑠 =
𝑃 𝐻𝑎𝑣𝑒 𝐾𝑖𝑑𝑠|𝑂𝑣𝑒𝑟 40 𝑃 𝑂𝑣𝑒𝑟 40

𝑃 𝐻𝑎𝑣𝑒 𝐾𝑖𝑑𝑠

P(kids) = ? P(over 40) = ?

http://www.epri.com/
http://www.bonjourdefrance.com/exercices/contenu/demander-et-dire-son-age.html
https://creativecommons.org/licenses/by-nc-nd/3.0/
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Bayesian Networks – A More “Real World” Example

*Wiegerinick, W., Burgers, W., Kappen, B., “Bayesian Networks, Introduction and Practical Applications”

Add layers to map to 

GT

http://www.epri.com/
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Bayesian Learning – Uses

▪ Uses
– Model calibration
– Diagnostics
– Model Updating

▪ Pros
– Flexible
– Can learn over time
– Suitable for discrete and continuous data
– Good for mixed data sets

▪ Cons
– Often difficult to setup
– Validation tricky
– Often requires coupling with additional modeling

(i.e., neural networks)

http://www.epri.com/
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Idea Behind Bayesian Calibration

▪ Use assumed prior belief coupled with observations to update your prior belief

▪ Also takes into account measurement and model representation error
– Model representation error known from regression (prior slide)

– Measurement error can be assumed based on sensor types

▪ All values are really distributions
– Conceptually think of every measurement & prediction as having a +/- intrinsically 

associated with it

http://www.epri.com/
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A Simple Example – Winning Percentage

▪ A binomial distribution shows expected win rate
– Useful for example since it is a ‘closed form’ update

▪ Example 1: Little prior knowledge
– Let’s assume I know my favorite team has 2 wins and 2 

losses
– The winning percentage is 50%, but how sure am I that is 

the true value?
– This curve represents my prior belief
– Looking at the spread it says I’m open to changing my 

opinion

▪ Let’s say my team goes on to win 5 in a row (so they 
are now 7 and 2)
– Now I’m fairly convinced they are an above 50% team
– Still some uncertainty as to how much better
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A Simple Example – Winning Percentage - Continued

▪ Now let’s assume my prior knowledge is that 
the team has 50 wins and 50 losses

– Same winning percentage (50%) as prior example

– More evidence, so I’m more certain

▪ Assume the team wins the next 5 games, same 
as before

– Now 55 wins and 50 losses

– Still shits my opinion, but the meat of my opinion is 
that they’re still close to a .500 team
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Winning Percentage – Putting into Bayesian Speak
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Examples and Relevant Impacts
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Where are (many of us) today?

▪ Many are using advanced pattern 
recognition

▪ Strengths:

– Generalized (Unsupervised)

– Easy to use – minimal engineer 
training required

▪ Weaknesses:

– Does not provide right level of 
interpretation for complex problems

How would you identify patterns at right??
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Where are we going???

▪ Generalized APR is focused on gross changes and is often 
correlation based

Historian
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• APR good for gross error in 
training set

• Error grows as time goes 
on – spend all day tracking 
false alarms
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Where are we going???

▪ Don’t let the APR do the correlating!

▪ Insert a physical or expert model into the process
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• Use physical model to provide 
insight into raw data

• Can still use APR or other 
techniques for trending and 
error detection

Digital Twin

Physics Model

Expert System
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Ways to incorporate higher fidelity

Digital Twin

Physics Model

Expert System

Physical 
Model

Encapsulation 
through 
AI/ML

Digital twin

http://www.epri.com/


© 2019 Electric Power Research Institute, Inc. All rights reserved.w w w . e p r i . c o m43

Issues and Challenges That Must Be Addressed
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Large Challenges Remaining

▪ Data and Data Management
– “Intentional Data”- data is available for performance and reliability

– Standardized clearing house for diagnostic and inspection data

– Any part / any engine / any time / immediately available

▪ Experience
– Standardized inspection reports and information

– Digital reports

– Automated correlation with monitoring tools

▪ Modeling
– Seamlessly merging experience, AI, and physics

– Usability of high fidelity tools by the masses

▪ Consider the iPhone vs. first IBM mainframe

▪ AI helps enable this!

– Intimate and automated feedback between modeling and data collection
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Together…Shaping the Future of Electricity
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