

Consideration of Artificial Intelligence Application and Impact for the Electric Power Gas Turbine Industry

ASME Turbo Expo GT2019-91963

Bobby Noble, Steve Seachman, Leonard Angello, Neva Espinoza Electric Power Research Institute

Chris Perullo, Ben Emerson, Tim Lieuwen Georgia Tech

Phoenix, Arizona June 20, 2019

in f
www.epri.com
© 2019 Electric Power Research Institute, Inc. All rights reserved.

EPRI

But...Where do we go from here?

www.epri.com

Yogi Berra The Yankees "You've got to be very careful if you don't know where you are going, because you might not get there."

RESCARCE INSTITUT

epei

Information through Analysis: Spectrum of Data Analytics

Operational

Computer-Assisted SME

- Pl
- Advanced Pattern Recognition (APR)
- Model Development
- Alarm Limits

Predictive

SME-Validated

- Advanced Infrastructure
- Edge Analytics
- Prognostics / RUL

© 2019 Electric Power Research Institute, Inc. All rights reserved.

Prescriptive

Computer-Guided SME

- Integrated Technical / Environment / Business Data
- Embedded Complexity

Gas Turbine: Typical Monitoring & Challenges

Instrumentation Problems

Tuning/Performance Deviations Hardware Issue Development

Machine Learning & 1st Principle Physics

Increased Sensitivities to Real/Actionable Issues

Allows for Computer Aided Diagnostics/Prognostics

Requires Data and SME Knowledge

Current Advanced Pattern Recognition

Great Indicator of Differences

Lacks Causation Indication

90%+ of Alarms Results in Model Retraining

Advanced Pattern Recognition Al

An Example

Let's assume you train your APR on pictures of mallard ducks

www.epri.com

APR will know this is a mallard duck, so all is normal!

APR will know it's not a duck, but what is it? Should I be worried?

APR Training - Today (Generalized)

*Note this is a general process description - specifics depend on details of model and software

9

Implementing AI Requires Solid Fundamentals In Place

www.epri.com

Example of Applying AI to Combustion Hardware

Early Detection of Transition Piece/Liner Failure

www.epri.com

Detect damage early before forced

Data + Analytics: Information in Context

Pathway was enabled by data

- Needed normal data
 - I0 different units
 - 6 to 24 months of data each
- Needed non-ideal data
 - 20 different abnormal data examples
- Needed failure data
 - Multiple failure types
 - Pivotal for testing analytic capability

DATA SIGNIFICANTLY MORE CONCENTRATED IN AEROSPACE

15

What Can Be Learned From Other Industries?

So Where Is Everyone Else?

- No one is close to complete utopian integration of knowledge, modeling, and data for diagnostics
- Where is power-gen compared to aviation sector?
 - Different sets of challenges

Aviation – Advanced Diagnostics Challenges

Airline Success Stories

 Noteworthy successes, but all are post issue, diagnostics

- Large data sets aid in analysis
- There may be predictive catches, but aren't being publically touted yet
- Establishes tolerance 'bands' for every part
- Part is pulled EVERY TIME measurements exceed band
- Rigorous inspection used to update tolerance – adjust limits
- Uses Smart Signal...

Quick Summary of Archetypes of Machine Learning

Artificial Neural Networks – What are they?

- Designed to mimic the connection of neurons in the human brain
- Nominally consists of 3-4 layers
 - (multi layer perceptron)

www.epri.com

- Input layer
- One to two neuron layers (hidden nodes)
- Output layer
- Both deterministic and probabilistic types exist
- Static and 'learning' or updating models exist

Inputs	Hidden Layer 1	Hidden Layer 2	Outputs

Artificial Neural Network - Uses

- Uses
 - Fitting models to observed data
 - Fitting models to computer generated data
 - Classification
- Types

This Photo by Unknown Author is licensed under CC BY

Artificial Neural Network - Uses

Pros

- Can adapt to discrete and non-linear responses
- Computationally efficient and portable once trained
- Can handle both discrete and continuous inputs simultaneously

Cons

- Easy to over-fit
- Can require more extensive data set for training
- Can be guess and check on network structure

Artificial Neural Networks – Common Functional Forms

- Input layer: Regression variables
- Hidden Layers contain activation functions
- Hidden Layers (commonly one or two)
 - Sigmoid $f(x) = \frac{1}{1+e^{-x}}$
 - Gaussian $f(x) = e^{-x^2}$
 - Linear f(x) = x
 - ArcTan $f(x) = \operatorname{atan}(x)$
 - Other variations, but all have similar characteristics shapes
- Output Layer
 - Linear combination of last hidden layer
 - $-Y = aH1(bx + c) + eH2(fx + g) + \cdots$
- Backpropagation algorithm solves for coefficients

Typical Activation Functions

ANN Major Considerations - Overfitting

- Neural networks are more complex
- Overfitting can lead to erratic behavior
- Provides inconsistent predictions away from training points
- Can cause issues if used in numerical simulation (including APR)
 - Most models work better if underlying functions are smooth with slowly changing gradient
 - Fortunately most engineering problems are also 1st or 2nd order
- Another reason training data quality is critical
 - A neural network can fit the data if given enough degrees of freedom

Clustering Algorithms - Uses

- Uses
 - Unsupervised learning
- Common Types
 - K-Means
 - Hierarchical
 - Normal Mixtures
- Pros
 - Useful when functional form of data is not known or hard to define (does not mean it does not exist!)
 - Easy to use and understand

- Cons

- Lack good ability to extrapolate
- Choosing the number of clusters can be difficult
- Geometrically based!
- Dependent on magnitude of data if data not normalized

Clustering Types: K- means

- One of the more common types is called k-means clustering
- Forms clusters on k (user selected) means in the dataset
- As an example define boundaries for peaking, cycling, and baseload operation based solely on data

K-Means Clustering Process (3 clusters)

Classification Algorithms – Uses

Uses

- Appropriate when training dataset already 'tagged'
- Types
 - Logistic Regression
 - Naïve Bayes Classifier
 - K-Nearest Neighbors
 - Decision Trees
 - Neural Networks

Pros

- Several options available
- Conceptually easy to understand
- More complex functional forms available
- Cons
 - Relies upon prior knowledge of group membership
 - Some are geometrically based

Hours per Year

Classification Example Applications – K Nearest Neighbors

- Similar to clustering approach, except response is the average of the knearest neighbors
- For a new point finds k nearest neighbors
- Largest number of matches yields class association
- Choosing the right k is trial and error

- Assume k set to three
 - New point at X
- 3 nearest neighbors are two blue and one green
 - Membership is blue

Bayesian Networks – What Are They?

- Follows Bayes Theorem:
 - $-P(Y|F) = \frac{P(F|Y)P(Y)}{P(F)}$
- The power behind Bayesian Networks lie in the fact that:
 - Prior beliefs can influence posterior (future) thinking based on new observations
 - Allow for model to learn over time as new data becomes available
 - Probabilistic

Bayesian Networks – A Simple Example

Bayesian Networks – A More "Real World" Example

P(immun 0.05	syst)	P(smoking) 0.3	P(common co 0.35	d)						
P(lung ca 0.1 0.01	ncer smok true false	ing)	ronchitissmoki0.3true0.01false	ng)	(runny nose common 0.9 true 0.01 false	cold)	Add layers (s to map to GT		
P(pneum	onia immu	n syst, lung c	ancer)	ver pneun	nonia, common cold)	Π				
0.3	true	true	0.	9 true	true	1				
0.3	true	false	0.	9 true	false					
0.05	false	true	0.	2 false	true					
0.001	false	false	0.0	1 false	false			immun sys	smoking	
									、 、	
P(cough	pneumonia	a, bronchitis)	P(chest pai	n pneumo	nia, bronchitis)					
0.9	true	true	0.9	true	true					
0.9	true	false	0.9	true	false					
0.9	false	true	0.9	false	true			¥	Ŷ	
0.1	false	false	0.1	false	false					
-				-			comm cold	pneumonia -	← lung cancer	bronchitis
P(dyspno	ea bronchi	itis, lung canc	er, pneumonia)	1			comm cond	P		oronemus
0.8	true	true	true				/		\sim / \sim	
0.8	true	true	false			/			\sim \sim	
0.8	true	false	true						\times	\times
0.8	true	false	false						$\langle \ \backslash $	
0.5	false	true	true			¥	ľ k	' K	X	
0.5	false	false	faise							Z
0.5	false	false	false		runny	nose	fever	chest pain	coughing	dyspnoea
0.1	Taise	Taise	Taise					*	0 0	• •

32

Bayesian Learning – Uses

- Uses
 - Model calibration
 - Diagnostics
 - Model Updating
- Pros
 - Flexible
 - Can learn over time
 - Suitable for discrete and continuous data
 - Good for mixed data sets
- Cons
 - Often difficult to setup
 - Validation tricky
 - Often requires coupling with additional modeling (i.e., neural networks)

Idea Behind Bayesian Calibration

- Use assumed prior belief coupled with observations to update your prior belief
- Also takes into account measurement and model representation error
 - Model representation error known from regression (prior slide)
 - Measurement error can be assumed based on sensor types
- All values are really distributions

www.epri.com

 Conceptually think of every measurement & prediction as having a +/- intrinsically associated with it

A Simple Example – Winning Percentage

- A binomial distribution shows expected win rate
 - Useful for example since it is a 'closed form' update
- Example 1: Little prior knowledge
 - Let's assume I know my favorite team has 2 wins and 2 losses
 - The winning percentage is 50%, but how sure am I that is the true value?
 - This curve represents my prior belief
 - Looking at the spread it says I'm open to changing my opinion
- Let's say my team goes on to win 5 in a row (so they are now 7 and 2)
 - Now I'm fairly convinced they are an above 50% team
 - Still some uncertainty as to how much better

A Simple Example – Winning Percentage - Continued

- Now let's assume my prior knowledge is that the team has 50 wins and 50 losses
 - Same winning percentage (50%) as prior example
 - More evidence, so I'm more certain
- Assume the team wins the next 5 games, same as before
 - Now 55 wins and 50 losses
 - Still shits my opinion, but the meat of my opinion is that they're still close to a .500 team

Winning Percentage – Putting into Bayesian Speak

Gas turbine model more complex, but same basic idea:

There are health and performance parameters which influence the performance of the machine – we want to estimate them based on our working knowledge of the hardware

Examples and Relevant Impacts

Where are (many of us) today?

- Many are using advanced pattern recognition
- Strengths:
 - Generalized (Unsupervised)
 - Easy to use minimal engineer training required
- Weaknesses:
 - Does not provide right level of interpretation for *complex* problems

How would you identify patterns at right??

Where are we going???

 Generalized APR is focused on gross changes and is often correlation based

Where are we going???

Don't let the APR do the correlating!

Insert a physical or expert model into the process

Ways to incorporate higher fidelity

Issues and Challenges That Must Be Addressed

Large Challenges Remaining

Data and Data Management

- "Intentional Data"- data is available for performance and reliability
- Standardized clearing house for diagnostic and inspection data
- Any part / any engine / any time / immediately available

Experience

- Standardized inspection reports and information
- Digital reports
- Automated correlation with monitoring tools

Modeling

- Seamlessly merging experience, AI, and physics
- Usability of high fidelity tools by the masses
 - Consider the iPhone vs. first IBM mainframe
 - AI helps enable this!
- Intimate and automated feedback between modeling and data collection

Together...Shaping the Future of Electricity

