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Abstract —  Most photovoltaic power generation sites schedule 

maintenance as a result of physical inspections and observations. 
For example, a site may use aerial infrared imaging to determine 
the fault status of individual combiner boxes and/or strings. 

However, the costs to perform aerial scans result in infrequent, 
typically annual, application. As a result, DC faults can often go 
unnoticed for months at a time. While this repetitive, expensive 

task is attractive for automation, the limited granularity of 
modern sensor suites makes it difficult. The authors’ work has 
enabled continuous, real-time PV anomaly detection using 

existing, installed sensor suites. This relies on a detailed knowledge 
of the site layout to correctly predict expected performance. 
Previously this information was manually codified using available 

site drawings for each site. However, the manual review and 
codification of metadata is time-consuming, increasing the 
investment required for an M&D center to implement the code. 

This difficulty is exacerbated by the competitiveness of the PV 
market, which has led to leaner O&M investments. This work 
presents a new method to estimate the site architecture using 

performance data and a fraction of the metadata. The setup speed 
is accelerated by more than a factor of 15, while achieving similar 
anomaly detection quality to the previous work using manually 

codified site layouts. 

I. INTRODUCTION 

Monitoring and diagnostics (M&D) play an increasingly 

important role supporting both business and engineering 

decisions across the power industry. Utility M&D centers 

leverage the advances associated with modern digitalization –

affordable data storage and computational power, advanced 

analytics, and modern sensor suites – to characterize and 

improve power plant operations. While the trend towards more 

data-informed decision-making is universal, the specific goals 

and implementations vary significantly across power 

generation methods. In the case of photovoltaic (PV) power 

plants, M&D centers generally observe electrical properties and 

weather conditions. In essence, the weather conditions, 

particularly irradiance measurements, give the operators an idea 

of how the plant should be operating, and the electrical 

properties give them an idea of how it is operating. 

Operators at PV plants perform both corrective and 

preventative maintenance. The former corrects issues which 

have already occurred, and the latter corrects issues which are 

expected to occur. Large and/or widespread problems often 

receive corrective maintenance priority as they impact a plant’s 

power production capabilities more significantly. Preventative 

maintenance needs to balance the cost of maintenance with the 

risk of experiencing a future outage [1]. In this case, M&D 

centers’ data can be used to train risk models that inform 

preventative maintenance plans. 

One significant challenge for M&D centers to address is the 

scale and remoteness of PV plants. While M&D centers are 

uniquely situated to handle large amounts of data, due to the 

costs of new sensors, the need to maintain sensors, and the need 

to store the data collected by each sensor, it is often cost 

prohibitive to put sensors on each solar panel or each string of 

panels. When compared to traditional power generating assets, 

such as gas turbines, PV plants require one to two orders of 

magnitude more sensors, depending on the size and layout of 

the plant. Many PV plants collect and record data at the inverter 

and the combiner box level. Each site analyzed in this paper has 

between 250 and 2400 combiner boxes, approximately 16 

strings per combiner, and approximately 20 modules per string. 

Instrumenting at the module level would increase the required 

number of sensors by 320-fold. Each sensor collects its 

measurements as a function of time, often sending minute-by-

minute data back to the M&D center.  

Standard sensor suites make it trivial to detect large 

problems, like inverter outages. Smaller scale sub-inverter 

issues in the DC collector field, such as string outages, are more 

difficult to detect even though they can account for 

approximately 2% of losses from a plant’s nameplate capacity 

[2]. Recent work has attempted to automatically detect and 

localize these faults using available plant data [3]. Accurately 

identifying a fault’s location within the site is vital because it 

enables the maintenance team to spend less time finding the 

faults and more time fixing them. Consider a case in which an 

anomaly detection routine detects a string outage within an 

inverter. The maintenance team can find the fault much more 

efficiently if they know which combiner is faulted, rather than 

inspecting all combiner boxes within the inverter [5]. 

If automated, a data-driven anomaly detection method can 

operate on real-time data to perform continuous fault 

monitoring. This differs from other fault diagnosis methods, 

which often involve manual panel inspection or aerial infrared 

inspections performed by flying an aircraft or drone above the 

site – both of which are too expensive to perform continuously. 

Aerial fault status measurements are generally performed as 

part of annual maintenance routines [1]. As a result, faults can 

go unnoticed for months on end. Continuous anomaly detection 

enables operators to prepare maintenance schedules using more 

up-to-date information. 



While previous anomaly detection work has shown 

promising results in terms of accuracy and usability [3], it still 

requires a significant time investment to configure a model. The 

competitiveness of the PV market has resulted in lean O&M 

budgets, making significant time investments to configure new 

software more difficult. In general, model frameworks are 

created first, then they are calibrated to specific sites. The 

variation between sites introduces a tedious problem for the 

modeling team: configuration. One fundamental variation that 

all PV modelers have to consider is site layout – that is, how 

many combiners are there in each inverter, how many strings 

are there in each combiner, and how many modules are there 

in each string. Traditionally, modelers manually review the site 

as-built drawings. This is a laborious, time-consuming task that 

leaves room for user errors. 

Third-party modelers, who often interact with data from 

various utilities, face another hurdle in the site configuration 

process: they need to translate the tags from the utility’s naming 

convention to one that works across all of the datasets being 

modeled. Tags are names by which operators and modelers can 

reference data streams. The tag translation step is needed so 

third-party code can pull needed data from the source.  

The present work introduces two new algorithms to 

automatically estimate the PV site layout, enabling automated 

configuration for PV modeling pipelines. The first method 

automatically translates the tag names used by a utility using a 

short list of patterns provided by the user. The translation 

enables modelers to easily access needed data streams 

regardless of any utility’s tag-naming schema – third-party 

models that interact with data from various utilities benefit most 

from this functionality. The second method codifies the 

hierarchical architecture of a site down to the combiner box 

using the available tags, then estimates the number of strings 

and the number of modules per string for each combiner box 

using performance data. The algorithms write code-readable 

configuration files that can be used in arbitrary PV modeling 

pipelines. 

II. METHODOLOGY 

The anomaly detection method applied to this work and 

described in [3] requires an engineer to manually provide (i) tag 

mappings for each data stream, (ii) a detailed codification of the 

site architecture, and (iii) individual hardware component 

specifications. In the authors’ experience from doing this for 

several sites, manual configuration takes at least eight human 

hours, depending on the size of the plant. The current work 

simplifies the configuration process by automatically 

generating the first two items from the list given a reduced set 

of metadata. The automatic configuration takes approximately 

30 minutes and has three high-level steps. 

First, the tags are mapped from the utility naming convention 

to a user-defined convention. Electrical and weather readings 

are then filtered to only retain clean maximum power point 

(MPP) data, which is compared with the modules’ datasheet 

values to estimate the combiner-level layout information. 

Finally, the tag mapping and estimated per-combiner layout are 

combined into the necessary site configuration files for a fault 

detection algorithm. 

A.  Tag Mapping Standardization 

Naming conventions vary greatly from utility to utility. For 

example, imagine a combiner box at hypothetical Site ABC. It 

may have the following tag: ABC-1.D.4-A. From this format, an 

analyst can infer that it contains amperage data coming from 

Site ABC, array 1, inverter D, combiner box 4. But an analyst 

from another utility, or a third-party modeler, can only guess 

what it means. 

Due to the variation between tag naming conventions, it is 

helpful for the user to translate the tags to their own convention 

for each of the relevant information types. While relevant 

information types vary depending on the application, the 

anomaly detection method discussed in [3] is used to exemplify 

the process. It relies on the following information types (each 

as a function of time): 

• Inverter current, power, and voltage 

• Combiner box current 

• Ambient temperature 

• Plane of array irradiance 

• Wind speed 

• Tracker angles (if using solar trackers) 

 

Previously an engineer had to manually map each tag from 

the site to its standard counterpart. This took an author 

approximately an hour per site; the specific duration scales 

significantly with the site’s size. The new algorithm relies on 

user-input encodings to produce a one-to-one mapping between 

formats. 

Table 1 shows a few examples of different tag names for 

various data typically collected at PV plants. As PV plants are 

highly modular, it is generally easy to identify regular tag name 

formats that have been used to identify similar types of 

information, such as inverter voltages. The new method enables 

an engineer to list out a much shorter dictionary of tag name 

formats, such as those in the “Pattern” column of Table 1. So 

long as the site tags have a regular pattern, that pattern can be 

used to efficiently translate the tags. 

After the user provides a pattern for each information type, 

the algorithm uses regular expressions to create a mapping 

dictionary. It first determines which information type a tag 

contains and then searches each site tag for the components 

defined in brackets in the pattern dictionary – for example, 

array, inverter, etc. The algorithm can translate to any user-

defined format, using pattern components as specified by the 

user. For this work, the authors extracted the full inverter ID 

(i.e., {Array}.{Inverter}), the combiner box ID, and the met-

station ID for each data stream. After each component is 

extracted, it is composed into a user-defined standard format. 

Using this method, site data tags can be translated to the same 

format regardless of the source format. 



TABLE 1 

EXAMPLE TAG NAMES AND THEIR ARCHETYPICAL PATTERN 

Information 

Type 

Example 

Site Tags 

Pattern 

Inverter 

Voltage 

ABC-1.D-V {Site}-{Array}.{Inv.}-V 

Inverter 

Current 

ABC-1.D-A {Site}-{Array}.{Inv.}-A 

Combiner 

Current 

ABC-1.D.1-A {Site}-{Array}.{Inv.}.{Comb.}-A 

Combiner 

Current 

ABC-1.D.2-A {Site}-{Array}.{Inv.}.{Comb.}-A 

Ambient 

Temperature 

ABC-1.met1-T {Site}-{Array}.met{Station ID}-T 

B.  Data Cleaning 

Once the tags have been standardized, the data is cleaned and 

the meteorological readings are used to determine when a panel 

can be expected to operate at its MPP. The data filtering 

described in [3] has been used as a first step to reduce noise in 

the dataset. Points with low irradiance and low solar elevation 

angles are removed. Users can provide a list of known bad 

values (such as historian timeout values) which will also be 

removed. The cloud detection strategy from [3] was used to 

remove off-MPP data from each dataset. Additional data 

quality filters as described in [4] have been used to filter for 

non-physical values and point-to-point changes in the data 

streams. 

As the final estimation compares measured data to spec sheet 

data, one additional filtering step has been applied. The PVPRO 

package has a built-in function to estimate when PV current and 

voltage data are at the hardware’s maximum power point. This 

functionality is used to filter the dataset to only those points in 

time. 

C.  Codification of Site Architecture 

PV sites have hierarchical structures similar to Fig. 1. 

Working inwards, the components are array, inverter, combiner 

box, string, and module. This hierarchy is reflected in the 

standard tag mapping – that is, each combiner box tag contains 

information for the array and inverter under which it is housed, 

as indicated in Table 1. However, many models and analyses, 

such as the routine in [3], also rely on the number of strings per 

combiner box and the number of modules per string. Neither of 

these numbers is generally encoded in the combiner box tag 

names. As a result, the automated site setup routine infers these 

string and panel counts from measured performance data. 

Given the panel specifications, the current at max power (𝑖𝑀𝑃) 

and the voltage at max power (𝑉𝑀𝑃) can be estimated for each 

combiner box using PVPRO [6]. Once 𝑖𝑀𝑃 and 𝑉𝑀𝑃 have been 

calculated, the ratio is taken between the combiner box-level 

estimate and the single module datasheet values, as suggested 

in PVPRO’s documentation. The ratios are as shown in (1) and 

(2). The current ratios estimate the number of strings per 

combiner box and the voltage ratios estimate the number of 

modules per string.  

 

 
 
Fig. 1. The hierarchical structure of a PV site can be represented 

using arrays, inverters, combiner boxes, strings, and modules. 

 

 𝑛𝑠𝑡𝑟𝑖𝑛𝑔𝑠 =
𝑖𝑀𝑃,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑖𝑀𝑃,𝑑𝑎𝑡𝑎𝑠ℎ𝑒𝑒𝑡
 (1) 

 𝑛𝑚𝑜𝑑𝑢𝑙𝑒𝑠 =
𝑉𝑀𝑃,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑉𝑀𝑃,𝑑𝑎𝑡𝑎𝑠ℎ𝑒𝑒𝑡
 (2) 

The PVPRO method results in a unique estimation of the 

string count for each combiner box and the number of modules 

per string for that combiner box. But the precise estimates are 

not integers, whereas the real sites have integer string and 

combiner counts. Furthermore, the sites reviewed in this work 

had a few distinct string counts, and the number of modules per 

string was constant across the entire site. To convert PVPRO’s 

precise estimates to values more aligned with the real sites, the 

authors used two separate aggregation methods, one for string 

counts and the other for module counts. The module estimates 

are averaged to estimate a single value for each site. The string 

estimates, on the other hand, are clustered using a kernel density 

estimate (KDE) method like that described in [7]. 

 Fig. 2(a) shows the essence of the string clustering process 

used in this work. In this example, the ground truth string 

counts (as defined by the site drawings) are shown at the top: 

each combiner box contains either 16, 19, or 22 strings. The 

combiner-by-combiner estimates are shown next, with the 

small, filled points. Because the 𝑖𝑀𝑃 and 𝑉𝑀𝑃 estimates from 

PVPRO depend on the actual site performance data, these 

estimates reflect the current state of the plant and capture any 

degradation that has grown since the construction of the plant. 

As a result, the ratio between the estimated and nameplate MPP 

production does not scale perfectly with the number of strings 

(or modules) and ratios do not yield whole numbers. The 

unfilled circles at the bottom visualize how the hypothetical 

estimates may be clustered by the KDE method. While the 

clustered estimates are close, they don’t always match the 

blueprint values, as shown by the blue cluster. 

Figure 2(b) shows the KDE fit for a real site. In essence, 

clustering using a kernel density estimate entails: (i) fitting a 



kernel density estimate to the data and (ii) thresholding using 

that function’s peaks and troughs. The dark blue line indicates 

the KDE function. The local minima (green) are then selected 

as bounding thresholds and the local maxima (gray) are selected 

as cluster centers. Each estimate (yellow) is bounded according 

to its adjacent thresholds and is assigned the value of the 

corresponding cluster center. 

Interestingly, there is often a small cluster of PVPRO 

estimates around zero strings per combiner. While relatively 

unlikely, this can happen if the combiner box is entirely faulted. 

It is more likely that either the sensor has failed, or the data 

historian administrator set up combiner box tags that – for 

whatever reason – do not correspond to a real combiner box 

collecting data. The authors have observed this at a site with 

more than 2000 active combiner boxes. 

Finally, some light post-processing is performed on both sets 

of data, such as rounding the estimates to whole numbers 

(numbers of strings and modules are discrete values). The 

results are written to configuration files compatible with an 

anomaly detection pipeline, like that in [3]. 

 

 
 

Fig. 2. Overview of the KDE clustering method as it is applied to the 

strings per combiner estimate clustering. (A) shows hypothetical 

estimates and true values for a site. (B) shows estimates and thresholds 

for a real site. 

III.RESULTS AND DISCUSSION 

A.  Configuration Speed 

Manually configuring a site takes approximately eight human 

hours to complete. Using the automated method, configuration 

takes approximately 20 human minutes and 10 computer 

minutes. This is achieved by automating the most time-

consuming, tedious tasks. Consider the following tasks needed 

to enable the anomaly detection routine discussed in [3]: 

1) Translate 100+ to 1000+ tags (1 hour) 

2) Extract site layout from blueprints (4 hours) 

3) Create model configuration files (2 hours) 

4) Review and fix mistakes (2 hours) 

 

Each of these tasks is automated to some extent in the new 

method, leaving the following human tasks: 

1) Specify ~10 tag name patterns (10 minutes) 

2) Specify site specific metadata, like site location and 

module hardware specification (10 minutes) 

3) Run code (10 computer minutes) 

 

Note that the automated method does not require the user to 

spend nearly two hours finding and debugging mistakes. While 

repetitive and tedious tasks tend to tire people out, leading to 

mental lapses and errors, algorithms run precisely the same way 

each iteration. The automatic method automates each of the first 

three items in the manual method, making the fourth 

unnecessary.  

B.  Accuracy Relative to Blueprints 

The automated setup simply translates and codifies existing 

tags, so the resulting configurations are as accurate as the 

naming nomenclature and the data collected at the site. In some 

cases, the automatic approach yields more accurate 

representations of the site layout (down to the combiner box 

level) than the as-built drawings. The manually generated 

configs rely on site drawings to infer the site layout, and while 

these drawings should be perfect representations of the site, 

supply chain and hardware sourcing issues often lead builders 

to deviate from the plans. Discrepancies can also result if site 

operators create tags that correspond to non-existent combiner 

boxes, which the authors have observed in one instance. In 

general, however, the two methods generate identical site 

layouts, down to the combiner box level.  

There is more deviation between the two configuration 

methods for the string and module counts. This is because the 

automatic method relies on estimates, generated from site 

operations data, whereas the manual method uses the as-built 

site drawings. To compare the two values, an error metric is 

established that is simply the difference between the automatic 

estimates and the blueprint specifications. A negative error 

results when the automatic estimate is smaller than the blueprint 

value. The error – after aggregation – is shown in Figure 3. 

Since the automated setup relies on performance data, which 

is significantly affected by the time-of-year, the configuration 

was performed using both summer and winter data. It is clear 

that the performance data seasonality affects the estimates. For 

three of the four sites investigated, the estimates based on 

winter data yielded string estimates more similar to what is 

listed in the as-built bill of materials. Winter data also yielded 

equal or better estimates for all four sites’ module estimates. 

Several factors impact the accuracy of these results. At high 

temperatures, PV module performance degrades away from 

their stated spec sheet performance. The cooler winter 



temperatures have a slight cooling effect on the modules, 

lessening the impact of this heat-based performance reduction. 

The lower overall POA irradiance values in the winter reduce 

the impact of inverter clipping on the array performance, which 

artificially shifts the plant away from MPP operation and leads 

to mischaracterization of the plant by the automatic layout 

generation algorithm. Finally, curtailment was frequently 

observed in the summer months. This would have a similar 

impact as inverter clipping, in which operation is artificially 

shifted away from the natural MPP of the system.  

 

 
 

Fig. 3. Overview of the string count and module count estimation error 

at each site and for different training data. 

 

Figure 3 also shows that the module estimates tend to be far 

more accurate than the string estimates. This can be explained 

by the relative stability of voltage signals compared with 

combiner box signals. Since voltage is measured at the inverter, 

partial shading will have less of an impact on its signal than it 

would for a single combiner box. Additionally, the respective 

aggregation methods likely impact the estimation accuracy. The 

string estimates rely on KDE clustering to automatically 

determine the number of unique string counts at a site and 

which group each combiner box belongs to, which could lead 

to misassignment for some pieces of hardware. Additionally, 

since the KDE method is reliant on the point density of the 

estimates, several outliers could lead to the creation of a highly 

erroneous cluster value. On the other hand, the module 

estimates are all clustered into a single group, represented by 

the average of all estimates. Essentially, the module estimates 

have more points to determine the single correct cluster-center, 

so outlier estimates have less of an effect.  

Finally, while the bulk of the string estimate errors are within 

approximately five strings of the site drawing value, they do 

have a very wide range. This could happen for numerous 

reasons – for example, imperfections in filtering and modeling 

noisy data increases the estimates’ spread, and sensors 

flatlining can lead to significant under-predictions. The 

automatic configuration method is meant to streamline the 

model configuration process rather than entirely automate it. To 

mitigate errors of this sort, the authors added a post-processing 

rule that flags unusually low PVPRO estimates for manual 

review. 

C.  Effect on Anomaly Detection 

While it is useful to explore the specific differences between 

the automatic estimates and the as-built site drawings, it does 

not give a definitive answer about the method’s ultimate 

usefulness. That is, it isn’t clear whether methods using the 

automated site setup work. To this end, the authors assessed the 

performance of an anomaly detection model derived from that 

in [3] using both types of site configurations: (i) manual 

configuration created using the as-built site drawings and (ii) 

automatic configurations created using the methods in this 

work. The detection routine first generates features for each 

combiner box using a physics-based model. It leverages a 

clustering algorithm to identify the anomalous signals in these 

features. While the clustering algorithm has a tunable 

sensitivity, this work uses a single sensitivity to simplify 

comparisons between sites. 

Aerial IR imaging scans from the sites were used to generate 

ground truth classifications for each site. The ground truth 

classifications were compared with the automatic workflow’s 

results to calculate the true positive rate (TPR) and false 

positive rate (FPR) for each of the sites. In discussions with site 

operators, these are the two most important metrics – the former 

indicates how many faults the algorithm can catch, and the 

latter indicates how much time will be wasted inspecting non-

faulted hardware. F1 score is a standard classification accuracy 



metric that incorporates TPR and FPR. Sites 2 and 4 each were 

each scanned in two separate years, so the routine was 

evaluated separately for each scan – denoted with (a) and (b). 

The impact of the automated site set up on the anomaly 

detection routine’s ability to detect string outages is shown in 

Fig. 4. This – along with the time to configure a site – is the 

most important metric of the process’s utility. If an 

automatically configured site could never detect anomalies, the 

faster setup would be moot. 

Generally speaking, automating the model setup slightly 

decreases anomaly detection performance, but the results vary 

depending on the site. Automatically configuring the site with 

winter data mostly performs on par with the manual setup, 

while the detection success was more noticeably reduced when 

summer data was used for the architecture estimation. As 

discussed in the prior section, winter calibration may lead to 

more accurate results because of the relative infrequency of 

curtailment and inverter clipping in the winter.  

Taking a step back, the main takeaway from Fig. 4 is that the 

automatic configuration achieves detection rates similar to 

those achieved with the manual configuration. This 

demonstrates that any inaccuracies derived from automating the 

setup process do not jeopardize the overall value proposition of 

continuous monitoring. 

 

 
 

Fig. 4. Automatic configuration achieves detection rates similar to 

those with manual configuration. Winter mostly outperforms summer. 

IV. CONCLUSION 

This automated setup method allows simpler implementation 

of an anomaly detection workflow that detects many DC faults 

that currently go unnoticed. More broadly, the setup method 

accelerates model calibration and, as a result, model uptake 

throughout utility-scale PV applications. Due to the 

hierarchical nature of PV plants, models that rely on site 

performance data need to also know the site layout, down to the 

module level. Otherwise, they cannot scale the results properly. 

Since data generally is not collected at a finer granularity than 

the combiner box level, this work introduces a method which 

estimates the strings per combiner and the modules per string 

using combiner box level performance data. For higher levels, 

the tags are used to infer the relationships between inverters and 

combiner boxes. The tag translation method is particularly 

well-suited to the large-scale, hierarchical structure of PV sites 

(and data historians). It can be applied to translate the tags for 

any dataset, so long as they have a strictly followed schema.  

The new workflow is evaluated by the speed to setup a new 

site, the similarity between automatically generated site layouts 

and manually generated ones, and the performance of an 

anomaly detection workflow using each method. Generally 

speaking, automating the setup leads to slightly different model 

configurations. Vitally, the anomaly detection pipeline 

provides usable results with both the manual and the automatic 

configurations. Continuous anomaly detection provides 

operators with more up-to-date information, and this algorithm 

enables widespread adoption by streamlining the setup process. 

ACKNOWLEDGEMENTS 

This work is funded by the U.S. Department of Energy Solar 

Technologies Office, under award numbers DE-EE-0008976. 

REFERENCES 

[1] D. Tansy. “Best practices for operation and maintenance of 
photovoltaic and energy storage systems; 3rd Edition,” Golden, 
CO, USA. 2018. 

[2] N. Vadhavkar, E. Obropta, S. Carey. “Solar Risk Assessment: 
2022,” kWh analytics, Raptor Maps. 2022. 

[3] S. Sheppard, T. Cook, D. Fregosi, C. Perullo, M. Bolen, “Field 
experience detecting PV underperformance in real time using 
existing instrumentation,” in 2022 IEEE 49th Photovoltaics 
Specialists Conference (PVSC), 2022. 

[4] “Photovoltaic systems performance – Part 3: Energy Evaluation 
method,” IEC Technical Specification, IEC TS 61724-3, ISBN 
978-2-8322-3531-7. 

[5] A. Triki-Lahiani, A. Bennani-Ben Abdelghani, I. Slama-
Belkhodja, “Fault detection and monitoring systems for 
photovoltaic installations: A review,” Renewable and Sustainable 
Energy Reviews, vol. 82, part 3, pp. 2680-2692, 2018. doi: 
https://doi.org/10.1016/j.rser.2017.09.101. 

[6] DuraMAT, Berkeley, CA. 2022. PV Production Tools (PV-Pro), 
ver 0.0.4. 

[7] W.J. Wang, Y.X. Tan, J.H. Jiang, J.Z. Lu, G.L. Shen, R.Q. Yu, 
“Clustering based on kernel density estimation: nearest local 
maximum searching algorithm,” Chemometrics and Intelligent 
Laboratory Systems, vol 72, iss. 1, pp. 1-8, 2004. Doi: 
https://doi.org/10.1016/j.chemolab.2004.02.006. 

 


